САНКТ-ПЕТЕРБУРГСКИЙ ГОРОДСКОЙ ЦЕНТР ДЕТСКОГО ТЕХНИЧЕСКОГО ТВОРЧЕСТВА

РАССМОТРЕНО на педагогическом совете СПбГЦДТТ Протокол № 1 от 30 августа 2023 г.

УТВЕРЖДАЮ Приказом № 71/2 от 31.08.2023 Директор СПбГЦДТТ А.Н. Думанский

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«Образовательная робототехника»

Возрастной состав обучающихся: 8 – 10 лет

Продолжительность обучения: 2 года

Разработчик: Кутузова Галина Николаевна, педагог дополнительного образования СПбГЦДТТ

Программа разработана: 2016 г. Последняя корректировка: 2023 г.

Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Образовательная робототехника» имеет **техническую направленность**, базовый уровень освоения. Программа направлена на приобретение обучающимися знаний в области робототехники, привлечение к современным технологиям конструирования, программирования и использования роботизированных устройств, приобретение учащимися навыков проведения исследований и разработки проектов, способствует жизненному и профессиональному самоопределению.

Актуальность программы

Новый технологический уклад в XXI предполагает широкое использование наукоемких технологий и оборудования с высоким уровнем автоматизации и роботизации. За последние годы успехи в робототехнике и применении автоматизированных систем изменили личную и деловую сферы нашей жизни. Роботы широко используются в массовом производстве промышленных товаров и товаров народного потребления, в транспорте, при проведении лабораторных исследований, в хирургии, в военной промышленности, в сфере безопасности, в исследованиях Земли и космоса. Робототехника — это сегодняшние и будущие инвестиции и, как следствие, новые рабочие места.

В настоящее время сформулирован *социальный заказ* на необходимость активной популяризации профессии инженера в детских образовательных учреждениях. Это делает актуальной программу «Образовательная робототехника» не только в данный момент, но и в перспективе.

Изучение основ робототехники по программе является эффективным методом обучения технологиям, конструированию, *интегрируется с учебным процессом в школе*, опираясь на такие школьные учебные дисциплины, как информатика, математика, физика, технология, окружающий мир.

Программа активизирует *развитие учебно-познавательной компетентности учащихся*. Полученные на занятиях знания становятся для ребят теоретической и практической основой их дальнейшего участия в техническом творчестве, выборе будущей профессии, в определении жизненного пути. Овладение навыками творчества позволяют применить их с нужным эффектом в своих дальнейших трудовых делах.

Данная программа помогает раскрыть творческий потенциал обучающегося, определить его резервные возможности, осознать свою личность в окружающем мире, способствует формированию стремления к дальнейшему самосовершенствованию.

Программа является *социальной востребованной*, так как отвечает желанию родителей видеть своего ребенка технически образованным, общительным, психологически защищенным, умеющим найти адекватный выход в любой жизненной ситуации.

Отличительные особенности программы

Процесс обучения осуществляется в очно-дистанционном формате. Возможна реализация программы с использованием сетевого и социального партнерства.

Программа «Образовательная робототехника» разработана на основе официального курса компании Lego Education, полагающего моделирование роботов в качестве прогрессивного, наглядного и одновременно практически полезного раздела робототехники, вобравшего в себя ее передовые достижения. Программа адаптирована под образовательные конструкторы для первого года обучения LEGO Education WEDO: 9580 (базовый программируемый); 9585 (ресурсный); 9689 «Простые механизмы» LEGO Education WEDO. Для второго года обучения: 9686 «Технология и физика», 9641 Пневматика», 9688 «Альтернативные источники энергии» LEGO Education.

Отличительными особенностями программы является то, что организация работы с образовательными робототехническими конструкторами строится на принципе практического обучения. Центральное место в программе занимают практические умения и навыки работы

на компьютере и с конструктором. Изучение каждой темы предполагает выполнение небольших проектных заданий (сборка и программирование своих моделей, сборка и исследование свойств конструкции, конструирование моделей для измерения физических величин).

При сборке моделей, учащиеся выступают в качестве юных исследователей и инженеров. В основе обучающего материала лежит изучение механических узлов конструкций, основных принципов механической передачи движения и элементарное программирование. Работая индивидуально, парами, или в командах, обучающиеся учится создавать и программировать модели, проводить исследования, составлять отчёты и обсуждать идеи, возникающие во время работы с этими моделями. На каждом занятии, используя привычные элементы конструкторов, а также мотор и датчики и др. Учащийся конструирует новую модель, посредством USB-кабеля подключает ее к ноутбуку и программирует действия робота.

Занятия опираются на естественный интерес к разработке и постройке различных механизмов и конструкций. При проведении занятий учитывается и используется тот факт, что дети и подростки лучше усваивают материал, когда они что-либо самостоятельно создают или изобретают. Обучение по программы помогает развитию коммуникативных навыков обучающихся за счет активного взаимодействия детей в ходе групповой проектной деятельности.

В ходе изучения программы учащиеся развивают логическое мышление, конструкторские способности, овладевают навыком совместного творчества, практическими навыками сборки и построения модели, получают специальные знания в области конструирования и моделирования, знакомятся с простыми механизмами.

Новизна программы заключается в активном применении в учебном процессе *технологии геймификации*. Изучение материала происходит через вовлечение обучающихся в игровую деятельность. Играя с роботом, дети получают возможность расширить свой круг интересов, с легкостью усваивают знания и получают новые навыки в таких предметных областях, как Естественные науки, Технология, Математика, Развитие речи, не боясь совершать ошибки и исправлять их. Ведь робот не может обидеть ребёнка, сделать ему замечание или выставить отметку, но при этом он постоянно побуждает их мыслить и решать возникающие проблемы. Развитию детского воображения и творческих способностей, накоплению полезных знаний, формированию абстрактного и логического мышления, конструкторских, инженерных и общенаучных навыков способствует комплексное использование педагогом ряда принципов:

- принцип деятельности: включение детей в активную созидательную деятельность; сочетание индивидуальных и коллективных форм работы; связь теории с практикой, приоритет практических занятий;
- принцип индивидуализации: учебный процесс реализуется с учетом возрастных психолого-педагогических особенностей развития ребенка;
- *принцип доступности*, последовательности и систематичности. Учебный материал излагается с учетом возврата к освоенному содержанию на новом, более сложном творческом уровне;
- принцип вариативности: развитие вариативного мышления ребенка через понимание возможности различных вариантов решения задачи и умение осуществлять выбор вариантов.
- принцип творчества: ориентация на творческое начало, приобретение и расширение собственного опыта творческой деятельности детей .

Адресат программы

Программа предназначена для детей 8-10 лет. Программа не предполагает наличия у обучающихся навыков в области робототехники и программирования или другой специальной

подготовки, прием в объединение осуществляется без специального отбора. В зависимости от начальной подготовленности обучающиеся могут зачисляться как в группы первого, так и второго годов обучения. Программа не требует наличия определенной физической и практической подготовки обучающихся по направлению программы.

Объем и срок реализации программы

Программа рассчитана на 2 года обучения. Занятия проводятся 1 раз в неделю по 2 часа.

Цели программы:

создание условий для формирования интереса к техническим видам творчества, развитие конструктивного мышления, мотивации, профессиональной ориентации школьников посредством робототехники; обучение основам конструирования через создание простейших моделей и управления ими с помощью простейших компьютерных программ.

Залачи:

обучающие:

- обучение решению творческих, нестандартных ситуаций на практике при конструировании и моделировании объектов окружающей действительности, решению кибернетических задач, результатом каждой из которых является работающий механизм или робот с автономным управлением;
- обучение решению базовых задач робототехники, комплексу базовых технологий, применяемых при создании роботов, основным принципам механики, навыкам конструирования;
- ознакомление с узлами и способами соединения конструкций, и видами простых механизмов
- обучение созданию и конструированию механизмов и машин, включая самодвижущиеся;
- ознакомление со средой и с основами автономного программирования;
- получение навыков работы с датчиками и двигателями;
- обучение основам программирования в компьютерной среде моделирования LEGO Wedo; умению грамотно выражать свою идею, проектировать ее техническое и программное решение, реализовывать ее в виде модели, способной к функционированию.
- · обучение правилам соревнований по LEGO конструированию и программированию.

развивающие:

- развитие навыков инженерного мышления, умения работать по предложенным инструкциям,
- развитие навыков конструирования, программирования и эффективного использования кибернетических систем;
- развитие креативного мышления и пространственного воображения;
- развивать навыки проектного мышления;
- развитие умения устанавливать причинно-следственные связи;
- анализ результатов и поиск новых решений;
- развитие информационной компетенции: навыков работы с различными источниками информации, умения самостоятельно искать, извлекать и отбирать необходимую для решения учебных задач информацию.
- развитие коммуникативной компетенции: навыков сотрудничества в коллективе, малой группе (в паре), распределение ролей, участия в беседе, обсуждении;
- развитие умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений.

воспитательные:

- приобщение учащихся к общечеловеческим ценностям;
- воспитание волевых личных качеств упорства, умения отстаивать собственное мнение, вести диалог, анализировать ситуацию;
- воспитание у детей интереса к техническим видам творчества;
- формирование коммуникативных способностей, умения работать в команде, способность к коллективной выработке идей и реализации некоторых из них;
- воспитание социально-трудовой компетенции: трудолюбия, самостоятельности,
- формирование у учащихся стремления к получению качественного законченного результата.

Условия реализации программы

При реализации программы используются различные образовательные технологии, включая дистанционные, электронное обучение. Основным веб-ресурсом является Google Диск.

условия набора в коллектив: принимаются дети в возрасте 8-10 лет без специального отбора;

условия формирования групп: разновозрастные обучающиеся; допускается дополнительный набор обучающихся, в зависимости от начальной подготовленности обучающиеся могут зачисляться как в группы первого, так и второго годов обучения.

количество детей в группе: на 1-м году обучения –15 человек; на 2-м году обучения –12 человек;

формы проведения занятий: при изучении нового и закреплении пройденного материала предусмотрены следующие формы проведения занятий:

- Бесела
- Сообщение-презентация;
- Работа в парах;
- Ролевая игра
- Познавательная игра
- Задание по образцу (с использованием инструкции, картинки, видеоролика)
- Творческая работа; Творческое моделирование (создание рисунка модели, 3D конструирование)
- Проект групповые учебно-практические и теоретические занятия; создание проблемной ситуации и поиск её практического решения (деятельностный подход);
- Знакомство с интернет ресурсами, связанными с робототехникой
- Работа по индивидуальным планам (исследовательские проекты);
- Участие в соревнованиях, конкурсах между группами; выездные занятия: выставки, мастер-классы, экскурсии, конференции, олимпиады,
- Комбинированные занятия.

Новым для учащихся является работа над проектами. Идет активная работа по обучению ребят анализу собранного материала и аргументации в правильности выбора данного материала.

формы организации деятельности учащихся на занятии:

Изучение темы предусматривает организацию учебного процесса в двух взаимосвязанных и взаимодополняющих формах. Процесс обучения состоит из теоретической и практической частей, причем большее количество времени занимает практическая часть, направленная на творческую деятельность обучаемых:

- *теория* (сообщение, беседа) где преподаватель объясняет новый материал и консультирует обучающихся в процессе выполнения ими практических заданий с конструктором и на компьютере;
- *практика*, в которой обучающиеся самостоятельно выполняют на компьютере (среда виртуального конструирования и программирования) практические задания. После практикумов по сборке и программированию базовых моделей,

предусмотрена творческая проектная работа, ролевые игры, внутренние соревнования, выставки. .

занятия по данной программе состоят из теоретической и практической частей, большее количество времени отводится практической части. основной формой являются *групповые* занятия или парами (командами). Один член парной команды выполняет роль конструктора, а другой – программиста.

особенности организации образовательного процесса: Программное обеспечение конструкторов ПервоРобот WeDo предназначено для создания программ путём перетаскивания Блоков из Палитры на Рабочее поле и их встраивания в цепочку программы. Для управления моторами, датчиками наклона и расстояния, предусмотрены соответствующие Блоки. Кроме них имеются и Блоки для управления клавиатурой и дисплеем компьютера, микрофоном и громкоговорителем. Программное обеспечение автоматически обнаруживает каждый мотор или датчик, подключенный к портам коммутатора. Раздел «Первые шаги» программного обеспечения WeDo знакомит с принципами создания и программирования моделей.

Занятия первого года обучения сгруппированы в четыре раздела «Забавные механизмы», «Звери», «Футбол» и «Приключения», каждый из которых имеет свою предметную область, на которой фокусируется деятельность учащихся.

В разделе «Забавные механизмы» основной предметной областью является физика. В игровой и практической деятельности дети знакомятся с основными видами движения, с принципами работы рычагов, вращением и ременными передачами.

В разделе «Звери» основной является технология, понимание того, что система должна реагировать на свое окружение (использование датчиков расстояния).

Математика становится основной областью в теме «Футбол», где требуются измерительные навыки, устный счет, знание основных арифметических действий, а также основы программирования.

Раздел «Приключения» сфокусирован на развитии коммуникативных умений и навыков.

Программа 2 года обучения включает повторение и углубление знаний о простых механизмах, изучение моторных механизмов, механических узлов конструкции. второго года обучения включают четыре крупных раздела «Физика роботов», , «Пневматика», «Альтернативные источники энергии» и «Творческое проектирование. конструирования MAKER», каждый из которых имеет свою предметную область, на которой фокусируется деятельность учащихся. Все занятия с образовательными конструкторами предусматривают, что учебный процесс включает в себя четыре составляющие: Установление взаимосвязей, Конструирование, Рефлексия и Развитие. Устанавливая связи между уже имеющимся и новым опытом, полученным в процессе обучения, ребенок приобретает знания. Педагог ставит новую техническую задачу, решение которой ищется совместно. Обучение в процессе практической деятельности, предполагает создание моделей и реализацию идей путем конструирования. При необходимости, выполняется эскиз конструкции. Далее учащиеся работают в группах по два человека. В зависимости от задач, на занятиях используются разные виды конструирования: Исследование, проводимое под руководством педагога и предусматривающее пошаговое выполнение инструкций, в результате которого дети строят модель, используемую для обработки данных. По выполнению задания учащиеся делают выводы о наиболее эффективных механизмах и конструкциях. На этапе Рефлексия детям дается возможность обдумать то, что они построили. Размышляя, дети устанавливают связи между полученной и новой информацией и уже знакомыми им идеями, а также предыдущим опытом. На этом этапе в каждом задании детям предлагается некоторый объем вопросов, побуждающих установить взаимосвязи между опытом, который они получают в процессе работы над заданием, и тем, что они знают в реальном мире. На этапе Развитие детям предлагаются дополнительные задания.

В процессе обучения используются разнообразные методы обучения, применяемые в прохождении программы:

Традиционные:

- объяснительно-иллюстративный метод (беседа, рассказ, работа с литературой и т.п.);
- репродуктивный метод;
- метод проблемного изложения;
- частично-поисковый (или эвристический) метод;
- исследовательский метод. Формирование и совершенствование умений и навыков (изучение нового материала, практика).
- обобщение и систематизация знаний (самостоятельная работа, творческая работа, дискуссия).
- контроль и проверка умений и навыков (самостоятельная работа).

Современные:

- метод проектов:
- метод обучения в сотрудничестве;
- метод взаимообучения;
- метод подведения итога реализации программы (участие в научно-практических конференциях конкурсах);
- создание ситуаций творческого поиска;
- стимулирование (поощрение).

Материально-техническое оснащение программы:

Комплекты содержит определенные для каждой темы задания. Все задания снабжены анимацией и пошаговыми сборочными инструкциями.

Для реализации программы в кабинете должно иметься следующее оборудование:

- 1. Образовательные наборы для изучения робототехники: Простые механизмы, Программируемые проекты, базовые и резервные по15 шт.; Технология и физика, Пневматика, альтернативные источники энергии. Lego education по10 шт.
 - 2. Дополнительные датчики.
 - 3. Зарядные устройства, аккумуляторы
 - 4. Персональный компьютер установленной программой— 15 шт.;
 - 5. Мультимедийный проектор -1 шт.;
 - 6. Интерактивная доска;
 - 7. Презентация (ЦОР «Основы робототехники»)
 - 8. Технологические карты;
 - 9. Лазерный принтер 1 шт.:
 - 10. Роботодром с полем.
 - 11. Канцелярские принадлежности.

Планируемые результаты освоения программы

Личностные результаты

Обучающийся должен:

- уметь критически относиться к информации, воспринимать ее избирательно;
- уметь осмысливать мотивы своих действий при выполнении заданий;
- обладать самостоятельностью суждений, независимостью и нестандартностью мышления;
- обладать чувством справедливости, ответственности;
- положить начало своему профессиональному самоопределению, ознакомиться с миром профессий, связанных с робототехникой.

Метапредметные результаты

Обучающийся должен обладать:

- умением осуществлять поиск информации на каждом уровне: в информационной среде образовательного учреждения, в индивидуальных информационных образовательных ресурсах;
- умением использовать средства информационных и коммуникационных технологий для решения коммуникативных, познавательных и творческих задач;
- умением ориентироваться на разнообразие способов решения задач;
- умением осуществлять анализ объектов с выделением существенных и несущественных признаков;
- умением проводить сравнение, классификацию по заданным критериям;
- умением строить логические рассуждения в форме связи простых суждений об объекте;
- умением устанавливать аналогии, причинно-следственные связи;
- умением моделировать, преобразовывать объект из чувственной формы в модель, где выделены существенные характеристики объекта (пространственно-графическая или знаково-символическая);
- владение монологической и диалогической формами речи;
- умение синтезировать, составлять целое из частей, в том числе самостоятельное достраивание с восполнением недостающих компонентов;
- умением выбирать основания и критерии для сравнения, классификации объектов; коммуникативными умениями, такими как:
- умение аргументировать свою точку зрения на выбор оснований и критериев при выделении признаков, сравнении и классификации объектов
- умение выслушивать собеседника и вести диалог
- умение признавать возможность существования различных точек зрения и права каждого иметь свою;
- умение планировать учебное сотрудничество с педагогом и сверстниками определять цели, функций участников, способов взаимодействия;
- умение осуществлять постановку вопросов инициативное сотрудничество в поиске и сборе информации;
- умение разрешать конфликты выявление, идентификация проблемы, поиск и оценка альтернативных способов разрешения конфликта, принятие решения и его реализация;
- умение с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации.
- владение монологической и диалогической формами речи

Предметные результаты

Обучающийся должен обладать:

- знанием основных принципов механической передачи движения;
- знанием элементов робототехнических конструкторов, владением терминологией;
- умением работать по предложенным инструкциям;
- умением создавать реально действующие модели роботов по разработанной схеме и по собственному замыслу;
- умением творчески подходить к решению задачи; умения довести решение задачи до работающей модели;
- способностью к самостоятельному решению ряда задач с использованием образовательных робототехнических конструкторов и к созданию творческих проектов;

Конкретный результат каждого занятия — это робот или механизм, выполняющий поставленную задачу. Проверка проводится как визуально — путем совместного тестирования моделей, роботов, так и путем изучения программ и внутреннего устройства конструкций, созданных учащимися, освоить основные принципы программирования в среде WEDO; демонстрировать технические возможности роботов.

Учебный план 1 года обучения

No		Количес	ство часов		
115	Разделы программы	Всего	Теория	Практи ка	Формы контроля
1.	Инструктаж по ТБ Введение в Мир механизмов Lego WeDo	2	1	1	Беседа, практическое задание
2.	Простые механизмы	12	4	8	Беседа, практическое задание
3.	Работа с компьютером. Знакомство с виртуальным конструированием LegoDigital Designer. и программированием в среде ЛЕГО –WEDO	6	3	3	Беседа, практическое задание
4.	Введение в робототехнику Конструирование и программирование. Первые шаги. Простейшие механизмы. Изучение датчиков и моторов.	10	4	6	творческое задание
5.	Забавные механизмы. Создание проектов по инструкции. Использование проектов для выполнения задач.	8	2	6	Беседа Практическое и творческое задание
6.	Механические модели «Звери»	6	2	4	Беседа Практическое и творческое задание
7.	Механические модели «Футбол».	6	1	5	Беседа Практическое и творческое задание
8.	Механические модели «Приключения».	6	1	5	Беседа, Практическое и творческое задание
9.	Роботы LEGO WeDo. Идем дальше - создание сложных моделей	10	2	8	Беседа, Практическое и творческое задание
10.	Творческое проектирование.	2	0	2	Практическое и творческое задание
11.	Итоговые занятия Участие в конкурсах, соревнованиях	4	0	4	Творческое задание Карточки-задания. Презентация
	Всего:	72	20	52	

Учебный план 2 года обучения

	Разделы программы	Количес	тво часов		
$N_{\underline{0}}$		Всего	Теория	Практи	Формы контроля
		Beero	теория	ка	
1	Физика роботов	50	14	36	Беседа, творческое
1.	Физика роботов	30	14	30	задание
2	Пневматика	10	3	7	Беседа, творческое
۷٠					задание
2	Альтернативные источники	10	3	7	Беседа, творческое
3.	энергии	10	3	/	задание
4	Итоговые занятия	2	1	1	Опрос Беседа,
4.	итоговые занятия	\ \(\alpha \)	1	1	творческое задание
	Всего	72	21	51	

Календарный учебный график

Год обучен ия	Дата начала обучения по программе	Дата окончания обучения по программе	Всего учебных недель	Количество учебных часов	Режим занятий
1 год	1 сентября	По мере выполнения программы 1 года обучения	36	В соответствии с учебным расписанием	1 раз в неделю по 2 часа;
2 год	1 сентября	По мере выполнения программы 2 года обучения	36	В соответствии с учебным расписанием	1 раз в неделю по 2 часа;

Директо	р СПбГЦДТТ
A.	Н. Думанский

РАБОЧАЯ ПРОГРАММА

к дополнительной общеобразовательной общеразвивающей программе

«Образовательная робототехника»

2023-2024 учебный год

Год обучения 1 Группа № 1

Кутузова Галина Николаевна, педагог дополнительного образования СПбГЦДТТ

Пояснительная записка

Рабочая программа 1-го года обучения составлена на основе дополнительной общеобразовательной общеразвивающей программы «Робототехника. Конструируй, Программируй, Исследуй».

Особенности организации образовательного процесса.

Программа 1 года рассчитана на учащихся 8-10 лет. Программа 1 года обучения рассчитана на 72 часа в год. Продолжительность занятий — 1 раз в неделю, по 2 академических часа (90 минут). Численность групп определяется в соответствии с санитарными нормами, предъявляемыми в аудитории робототехники. На одного учащихся приходится одно специально оборудованное, рабочее место. Кабинет оснащен необходимым оборудованием, компьютерами, проектором и интерактивной доской. Программа адаптирована под образовательные конструкторы LEGO Education WEDO: 9580 (базовый программируемый); 9585 (ресурсный); 9689 «Простые механизмы» LEGO Education WEDO

Цель первого года обучения –

Создание условий для формирования интереса к техническим видам творчества, развитие конструктивного мышления, мотивации, профессиональной ориентации школьников и представления об окружающем мире посредством робототехники; обучение основам конструирования через создание простейших моделей и управления ими с помощью простейших компьютерных программ.

ЗАДАЧИ первого года обучения: обучающие

- расширить знания учащихся об окружающем мире, о мире техники;
- обучить решению творческих, нестандартных ситуаций на практике при конструировании и моделировании объектов окружающей действительности;
- познакомить с узлами и способами соединения конструкций, и видами простых механизмов
- обучить создавать и конструировать механизмы и машины, включая самодвижущиеся;
- познакомить со средой и с основами автономного программирования
- обучить программировать простые действия и реакции механизмов и получить навыки программирования;
- получение навыков работы с датчиками и двигателями;
- развитие навыков решения базовых задач робототехники.

развивающие

- развитие творческого, и пространственного воображения при создании действующих моделей;
- развитие конструкторских навыков и изобретательности
- развитие умения работать по предложенным инструкциям по сборке моделей
- установление причинно-следственных связей логического мышления учащихся;
- анализ результатов и поиск новых решений;
- проведение систематических наблюдений и измерений;
- экспериментальное исследование, оценка (измерение) влияния отдельных факторов;
- использование таблиц для отображения и анализа данных;
- развитие мелкой мускулатуры пальцев и моторики кисти младших школьников, внимательности, аккуратности учащихся;

- развитие словарного запаса и умения выразить свой замысел; излагать мысли в четкой логической последовательности;
- написание и воспроизведение сценария с использованием модели для наглядности и драматургического эффекта;
- организация и участие в играх, конкурсах и состязаниях роботов в качестве закрепления изучаемого материала и в целях мотивации обучения;
- развитие коммуникативной компетенции: навыков сотрудничества в коллективе, малой группе (в паре), распределение ролей, участия в беседе, обсуждении;
- формирование и развитие информационной компетенции: навыков работы с различными источниками информации, умения самостоятельно искать, извлекать и отбирать необходимую для решения учебных задач информацию.

воспитательные

- приобщение учащихся к общечеловеческим ценностям;
- развитие волевых личных качеств упорства, умения отстаивать собственное мнение, вести диалог, анализировать ситуацию;
- воспитание у детей интереса к техническим видам творчества;
- формирование коммуникативных способностей, умения работать в команде, коллективная выработка идей, упорство при реализации некоторых из них;
- развитие социально-трудовой компетенции: воспитание трудолюбия, самостоятельности,
- формирование у учащихся стремления к получению качественного законченного результата.

Особенности организации образовательного процесса первого года обучения

Основная форма деятельности учащихся — это самостоятельная интеллектуальная и практическая деятельность учащихся, в сочетании с групповой, индивидуальной формой работы обучающихся. Образовательный контекст строится на 4 этапах:

- установление взаимосвязей,
- конструирование,
- рефлексия,
- развитие.

<u>Установление взаимосвязей</u>. При установлении взаимосвязей учащиеся как бы «накладывают» новые знания на те, которыми они уже обладают, расширяя, таким образом, свои познания. К каждому из заданий комплекта прилагается анимированная презентация с участием фигурок героев — Маши и Макса. Использование этих анимаций, позволяет проиллюстрировать занятие, заинтересовать учеников, побудить их к обсуждению темы занятия.

<u>Конструирование.</u> Учебный материал лучше всего усваивается тогда, когда мозг и руки «работают вместе». Работа с робототехническими конструкторами базируется на принципе практического обучения: сначала обдумывание, а затем создание моделей. В каждом задании комплекта для этапа «Конструирование» приведены подробные пошаговые инструкции.

<u>Рефлексия</u>. Обдумывая и осмысливая проделанную работу, учащиеся углубляют понимание предмета. Они укрепляют взаимосвязи между уже имеющимися у них знаниями и вновь приобретённым опытом. В разделе «Рефлексия» учащиеся исследуют, какое влияние на поведение модели оказывает изменение ее конструкции: они заменяют детали, проводят расчеты, измерения, оценки возможностей модели, создают отчеты, проводят презентации, придумывают сюжеты, пишут сценарии и разыгрывают спектакли, используя в них свои модели. На этом этапе учитель получает прекрасные возможности для оценки достижений учеников.

<u>Развитие.</u> Процесс обучения всегда более приятен и эффективен, если есть стимулы. Поддержание такой мотивации и удовольствие, получаемое от успешно выполненной работы,

естественным образом вдохновляют учащихся на дальнейшую творческую работу. В раздел «Развитие» для каждого занятия включены идеи по созданию и программированию моделей с более сложным поведением.

Занятия первого года обучения сгруппированы в четыре раздела «Забавные механизмы», «Звери», «Футбол» и «Приключения», каждый из которых имеет свою предметную область, на которой фокусируется деятельность учащихся.

В разделе «Забавные механизмы» основной предметной областью является физика. В игровой и практической деятельности дети знакомятся с основными видами движения, с принципами работы рычагов, вращением и ременными передачами.

В разделе «Звери» основной является технология, понимание того, что система должна реагировать на свое окружение (использование датчиков расстояния).

Математика становится основной областью в теме «Футбол», где требуются измерительные навыки, устный счет, знание основных арифметических действий, а также основы программирования.

Раздел «Приключения» сфокусирован на развитии коммуникативных умений и навыков.

Процесс обучения состоит из теоретической и практической частей, причем большее количество времени занимает практическая часть, направленная на творческую деятельность обучаемых.

Содержание программы 1 года обучения

Раздел 1. Инструктаж по ТБ Введение в Мир механизмов LegoWeDo.

Теория: Инструктаж по ТБ. Правила организации рабочего места. Правила безопасной работы. Знакомство с конструктором Лего. Состав конструктора ПервоРобот LEGO® «Простые механизмы». Роботы в нашей жизни. Понятие. Назначение. Что такое робототехника. Виды роботов, применяемые в современном мире. Символы. Терминология. История Лего - мир механизмов. Знакомство с конструкторами ЛЕГО WEDO «Простые механизмы». Название деталей конструктора, варианты соединений Входной контроль История Лего. Перечень терминов деталей конструктора, варианты соединений деталей друг с другом.

Практика: Как работать с инструкцией. Проектирование моделей-роботов. Первые шаги. Среда конструирования. Построение простейшей конструкции по образцу. Сборка модели по замыслу

Исследование и анализ полученных результатов

Раздел 2. Конструирование. Простые механизмы Лего-геометрия. Виды механизмов Передаточное отношение. Виды передачи. Системы управления. Творческие задания.

Теория: Лего-математика. Умножение-деление. Дроби. Виды простых механизмов. Отношение в механизмах. Зубчатые колеса. Система запуска волчка. Колесная база. Рулевое управление. Рычаги Шкивы. Ременная передача

Практика: Конструирование «Хваталки». Как работать с инструкцией. Построение механизмов с заданным передаточным отношением. Построение простого механизма. Построение зубчатой, ременной передачи. Проработка принципиальных моделей. Конструирование часового механизма. Конструирование ручки. Конструирование волчка и системы механического запуска. Конструирование рулевого управления. Конструирование катапульты. Построение карусели.

Раздел 3. Работа с компьютером. Знакомство с виртуальным конструированием LegoDigitalDesigner. и программированием в среде ЛЕГО –WEDO

Теория: Начальные сведения о компьютере. Т.Б при работе с компьютером. Операционная система WINDOWS. Введение в файловую систему. Перечень терминов. Сочетание клавиш

Знакомство с виртуальным конструированием Компьютерное моделирование в программе Lego Digital Designer. Знакомство с программированием в среде ЛЕГО –WEDO.Знакомство с лего-коммутатором. Звуки. Фоны экрана.

Практика: Решение простейших задач. Работа в среде Windows. Компьютерное моделирование с виртуальным конструированием в программе. Lego Digital Designer. Создание простой инструкции в программе. Lego Digital Designer и построение модели по созданной инструкции. Программированием в среде ЛЕГО –WEDO.

Раздел 4. Введение в робототехнику. Конструирование и программированиеWEDO. Первые шаги. Простейшие механизмы. Изучение датчиков и моторов.

Теория: Принципы крепления деталей. Рычаг. Мотор и ось, Зубчатые колеса. Передаточное отношение. Повышающая передача, Понижающая передача, Холостая передача, Ременная передача и перекрестная ременная передача, Червячная зубчатая передача. Коронное зубчатое колесо. Кулачок.

Практика: Измерения (Решение практических задач). Названия и принципы крепления деталей: мотор и ось, зубчатые колеса, промежуточное зубчатое колесо, понижающая зубчатая передача, повышающая зубчатая передача, датчик наклона, шкивы и ремни, перекрестная ременная передача, снижение скорости, увеличение скорости, датчик расстояния, коронное зубчатое колесо, червячная зубчатая передача, кулачок, рычаг.

Блок «Цикл». Блок «Прибавить к Экрану». Блок «Вычесть из Экрана». Блок «Начать при получении письма». Маркировка. Строительство высокой башни. Хватательный механизм. Волчок. Силовая «крутилка».

Зачет – тестирование.

Раздел 5. Забавные механизмы. Создание проектов по инструкции. Использования проектов для выполнения задач.

Теория: Механические модели «Забавные механизмы»- создание моделей с использованием мотора и Лего-коммутатора. Роботы-автомобили, тягачи. Основной предметной областью является физика. Знакомство с зубчатыми и ременными передачами и передаточными отношениями, рычагами и кулачками.

Практика:

- 5.1. модель «Танцующие птицы»
- 5.2. модель «Умная вертушка»
- 5.3. модель «Обезьяна-барабанщица»
- 5.4. модель «Вращающийся маяк
- 5.5. модель «Мешалка для теста»

Зачет: Зачет – состоит из 2-х частей: 1 – просмотр видео-демонстрации работающего робота, сборка аналогичного робота, 2 – написание программы в среде LegoWeDo.

Раздел 6. Механические модели «Звери»

Теория: Создание моделей с использованием мотора, Лего-коммутатора и датчиков наклона и расстояния. Основной предметной областью является технология реакции системы на окружение.

Практика:

- 6.1. модель «Дракон»
- 6.2. модель «Рычащий лев»
- 6.3. модель «Порхающая птица»
- 6.4. модель «Голодный аллигатор»
- 6.5. модель «Механическая собака»
- 6.6. модель «Крокодил»

Зачет: Зачет – состоит из 2-х частей: 1 – просмотр видео-демонстрации работающего робота, сборка аналогичного робота, 2 – написание программы в среде LegoWeDo.

Раздел 7. Механические модели «Футбол».

Теория: Основной предметной область является математика. Измерение расстояния, подсчет голов и промахов.

Практика:

- 7.1. модель «Нападающий»
- 7.2. модель «Вратарь»
- 7.3. модель «Ликующие болельщики»

Зачет: Зачет – состоит из 2-х частей: 1 – сборка работающих роботов, написание программы в среде LegoWeDo;2 –совместная игра.

Раздел 8. Механические модели «Приключения».

Теория: Развитие речи, учащиеся выстраивают диалоги, описывают приключения. *Практика:*

- 8.1. модель «Спасение самолета»
- 8.2. модель «Спасение от великана»
- 8.3. модель «Непотопляемый парусник»
- 8.4. модель Аттракцион «Чертово колесо»

Зачет: Зачет – состоит из 2-х частей: 1 – просмотр видео-демонстрации работающего робота, сборка аналогичного робота, 2 – написание программы в среде LegoWeDo.

Раздел 9. Роботы LEGOWeDo. Идем дальше.

Теория: Создание более сложных моделей с использованием двух моторов, двух датчиков наклона и расстояния. Модели могут выполнять более сложные действия - повороты, зигзаги, движение по линии, движение вдоль стенки.

Практика: Конструирование и программирование сложных моделей по картинке, видеоролику.

Зачет: Зачет – состоит из 2-х частей: 1 – просмотр видео-демонстрации работающего робота, сборка аналогичного робота, 2 – написание программы в среде LegoWeDo.

Раздел 10. Творческие проекты

Теория: Интеллектуальные роботы.

Индивидуальные и групповые проекты.

Практика: Разработка творческих проектов на свободную тематику.

- 1. Роботы-помощники человека
- 2. Своболные темы.

Раздел 11. Итоговые занятия Контроль качества освоения знаний. Зачеты Участие в соревнованиях.

Теория: Выполнение тестов. Итоговый контроль Подведение итогов Правила соревнований *Практика*: Контроль качества освоения знаний. Зачет по сборке модели Участие в соревнованиях «Юный конструктор».

Планируемые результаты обучения

Важнейшей отличительной особенностью стандартов нового поколения является их ориентация на результаты образования. Причем они рассматриваются на основе системно - деятельностного подхода.

- личностные: адаптация ребёнка к жизни в социуме, его самореализация; приобретение уверенности в себе; формирование самостоятельности, ответственности, взаимовыручки и взаимопомощи, отстаивать свою точку зрения. Проявление стремления к самостоятельной работе (усовершенствованию известных моделей и алгоритмов, созданию творческих проектов. Участие в мероприятиях по техническому творчеству для школьников, открытых состязаниях роботов и, просто, свободное творчество демонстрируют и закрепляют его) Регулярное содержание своего рабочего места и конструктора в порядке, что само по себе непросто. Развитие коммуникативных качеств, умение работать над проектом в команде, эффективно распределять обязанности, планирование своей деятельности, стремление к успеху и контроль над собой, повышение самооценки.
- метапредметные: Умение классифицировать материал для создания модели; Умения работать по предложенным инструкциям. Изменения в развитии мелкой моторики, памяти, речи, умение излагать мысли в четкой логической последовательности, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений; внимательности, аккуратности и особенностей мышления конструктора-изобретателя проявляется на самостоятельных задачах по механике. Наиболее ярко результат проявляется в успешных выступлениях на конкурсах состязаниях роботов и при создании и защите самостоятельного творческого проекта. Усвоение других математических знаний, так как для создания проектов требуется провести простейшие расчеты и сделать чертежи.
- предметные: Знание основных принципов механической передачи движения, знать конструктора WEDO, владеть терминологией; умение предложенным инструкциям, создавать реально действующие модели роботов по разработанной схеме и по собственному замыслу, умения творчески подходить к решению задачи; умения довести решение задачи до работающей модели. Способность учащихся к самостоятельному решению использованием образовательных ряда задач c робототехнических конструкторов, а также создание творческих проектов. Конкретный результат каждого занятия – это робот или механизм, выполняющий поставленную задачу. Проверка проводится как визуально – путем совместного тестирования моделей, роботов, так и путем изучения программ и внутреннего устройства конструкций, созданных учащимися, освоить основные принципы программирования в среде WEDO; демонстрировать технические возможности роботов.

В программу включены содержательные линии планируемых результатов:

- аудирование умение слушать и слышать, т.е. адекватно воспринимать инструкции;
- чтение осознанное самостоятельное чтение языка программирования;
- говорение умение участвовать в диалоге, отвечать на заданные вопросы, создавать монолог, высказывать свои впечатления;

- пропедевтика круг понятий для практического освоения детьми с целью ознакомления с первоначальными представлениями о робототехнике и программирование;
- творческая деятельность- конструирование, моделирование, проектирование.

Календарно-тематический план по программе «Образовательная робототехника»

_1__ год обучения 1 группа

$N_{\underline{0}}$	Кол-	Дата за	анятий	Раздел	Тема занятия	Соответствующая	Методическое
заня тия	во часов	по плану	по факту		(из содержания)	конкретная тема занятия (для журнала)	обеспечение занятия
1.	2			Раздел 1 (2 часа) Инструктаж по ТБ Введение в Мир механизмов Lego WeDo.	Вводное занятие. Инструктаж по ТБ. История ЛЕГО Мир механизмов Знакомство с конструкторами ЛЕГО WEDO «Простые механизмы». Название деталей конструктора, варианты соединений.	Вводное занятие. Инструктаж по ТБ. Мир простых механизмов.	Инструкции по технике безопасности Презентация (ЦОР «Основы робототехники) Технологические карта занятия
2.	2			Раздел 2 (12 часов) Простые механизмы	Вводный контроль. Виды простых механизмов. Построение простейшей конструкции по образцу. Конструирование «Хваталки» Построение бвшни. Практическое задание - сборка модели по замыслу.	Вводный контроль. Виды простых механизмов. Конструирование «Хваталки»	Презентация Инструкция для изучения робототехники: Простые механизмы, Руководство пользователя Простые механизмы, WEDO LEGO Mindstorms.
3.	2				Легоматематика. Умножение-деление. Дроби.	Зубчатая передача.	Презентация «Передаточное

			Зубчатые колеса. Передаточное отношение в механизмах. Конструирование ручки Передаточное отношение на другую плоскость. Конструирование волчка и системы механического запуска Творческое задание задание— «Накорми умную обезьянку».	Передаточное отношение Конструирование ручки волчка и системы механического запуска Творческое задание.	отношение». Руководство пользователя Простые механизмы, WEDO Технологические карта занятия -«А 1-4»: А 5-7»:
4.	2		Использование системы шестеренок в механизмах. Построение конструкции с передаточным отношением. Проект «Часовой механизм» Конструирование	Построение конструкции с передаточным отношением. Проект «Часовой механизм»	Презентация. «Часовые механизмы»
5.	2		Колесная база. Проработка принципиальных моделей Творческое задание «Машины вперед!» Конструирование рулевого управления Творческое задание «Тачка-карета»	Колесная база. Конструирование рулевого управления	Руководство пользователя Простые механизмы, WEDO LEGO Mindstorms Технологические карта занятия «В - 1-4» «Творческая мастерская» «В 5-6»
6.	2		Рычаги. Условия равновесия. Творческое задание. Конструирование катапульты. Баллистика	Рычаги. Баллистика Конструирование катапульты.	Руководство пользователя Простые механизмы, WEDO LEGO Mindstorms Технологические карта занятия «С-1-4» «Творческая мастерская»
7.	2		Шкивы. Способы соединения. Ременная передача.	Шкивы. Ременная передача. Построение сложной карусели. Зачет.	Руководство пользователя Простые механизмы, WEDO LEGO Mindstorms

			Творческое задание: «Построение спининга» Творческое задание: Построение сложной карусели. Конструирование простого механизма по картинке	Конструирование простого механизма по картинке	Технологические карта занятия «D-1-5» и «D-6-7» «Творческая мастерская»
8.	2	Раздел 3 Работа с компьютером. Знакомство с виртуальным конструированием LegoDigital Designer. и программированием в среде ЛЕГО –WEDO	Начальные сведения о компьютере. Т.Б при работе с компьютером. Знакомство с виртуальным конструированием. Создание простой виртуальной конструкции и инструкции в программе. LegoDigital Designer. Введение в файловую систему.	Т.Б при работе с компьютером. Виртуальное конструирование	Презентация (ЦОР). Технологические карта занятия. Компьютер.
9.	2	(6 часов)	Компьютерное моделирование в программе. LegoDigital Designer. Построение реальной модели по созданной инструкции в программе LegoDigital Designer	Создание виртуальной конструкции и инструкции Построение реальной модели по созданной инструкции	Презентация (ЦОР). Технологические карта занятия. Компьютер. П.О LegoDigital Designer.
10.	2		Зачетное занятие. Создание проекта в программе LegoDigital Designer.	Зачет. Создание проекта в программе LegoDigital Designer.	Компьютер. П.О - LegoDigital Designer. Компьютерное моделирование
11.	2	Раздел 4 Введение в робототехнику Конструирование и программирование.	Знакомство с конструктором ЛЕГО -WEDO - базовый набор Знакомство с программированием в среде ЛЕГО -WEDO маркировка: Звуки. Фоны экрана. Мотор	Рычаг. Мотор и ось конструирование мельницы Программирование в среде ЛЕГО –WEDO маркировка	Компьютер. П.ОЛЕГО - WEDO Руководство пользователя WEDO конструктор ПервоРобот LEGO® WeDo

12.	2	Первые шаги Простейшие механизмы. Первые шаги. Изучение датчиков и моторов. (10 часов)	и ось. Решение простейших задач: конструирование мельницы Зубчатые колёса базового набора. Понижающая и повышающая зубчатая передача Хватательный	Зубчатые колеса. Передаточное отношение. Решение практических задач Волчок.	Руководство пользователя WEDO ПервоРобот LEGO WeDo
13.	2		механизм. Управление датчиками и моторами в программе WeDo. Перекрёстная и ременная передача. Снижение и увеличение скорости Решение практических задач. Силовая «крутилка».	Управление датчиками и моторами, перекрёстная и ременная передача.	Руководство пользователя WEDO ПервоРобот LEGO WeDo
14.	2		Управление датчиками и моторами при помощи программного обеспечения WeDo. Коронное зубчатое колесо. Червячная зубчатая передача. Кулачок и рычаг. Решение практических задач	Управление датчиками и моторами. Червячная зубчатая передача Кулачок и рычаг.	Руководство пользователя WEDO ПервоРобот LEGO WeDo
15.	2		Блоки «Цикл» Программируемый калькулятор «Прибавить к Экрану» и «Вычесть из Экрана», «Начать при получении письма» Маркировка. Зачет — тестирование Решение практических задач.	Блоки «Цикл» Программа Программируемый калькулятор. Зачет	Презентация. Руководство пользователя WEDO Перво Робот LEGO WeDo
16.	2	Раздел 5 (8 часов)	Создание проектов «Танцующие птицы»	Проект «Танцующие птицы», «Бабочка»	Персональные компьютеры, ПО: LEGO

17.	2	Забавные механизмы.	«Бабочка» по инструкции. Задачи для роботов. Использования проектов для выполнения задач. Создание проекта к календарной дате	Конструирование. Программирование и тестирование модели Проект-Механическая моторизированная	WeDo конструктор LEGO WeDo рабочие листы.
			«Механическая новогодняя игрушка» с запуском моторного механизма от программы.	новогодняя игрушка»	
18.	2		Создание проекта «Умная вертушка» с запуском моторного механизма от программы. Задачи для роботов. Использования проектов для выполнения задач.	«Умная вертушка» Конструирование. Программирование и тестирование модели. Промежуточный контроль.	Инструкция (CD) Руководство пользователя WEDO ПервоРобот LEGO WeDo
19.	2		Создание проектов «Обезьяна-барабанщица», «Гадзилла». Задачи для роботов. Использования проектов для выполнения задач.	Проекты «Обезьянка – барабанщица» «Гадзилла» Конструирование. Программирование и тестирование модели	Инструкция (CD) Руководство пользователя WEDO ПервоРобот LEGOWeDo
20.		Раздел 6 (6 часов) Механические модели «Звери»	Животные водоемов, рек и морей. Создание проекта «Голодный аллигатор», «Жаба», «Лягушка», «Кит», «Морская Черепаха», «Тартилка», «Морской лев». Конструирование и программирование. Задачи для роботов. Использование мотора, коммутатора и	Животные водоемов, рек и морей. Создание проектов «Голодный аллигатор», Задачи для роботов Использование моделей для выполнения задач	Инструкция (CD) Руководство пользователя WEDO ПервоРобот LEGOWeDo

21.	2		датчиков наклона и расстояния для выполнения задач. Проекты «Рычащий лев», «Бык», «Прыжок кролика» Конструирование и программирование. Задачи для роботов. Использование моделей для выполнения задач	Проекты «Рычащий лев», «Бык», «Прыжок кролика» Использование моделей для выполнения задач.	Инструкции (CD) Руководство пользователя WEDO ПервоРобот LEGO WeDo
22.	2		Проект «Порхающая птица». Конструирование и программирование. Задачи для робота. Использование модели для выполнения задач	Проект «Порхающая птица». Использование модели для выполнения задач	Инструкция (CD) Руководство пользователя WEDO ПервоРобот LEGOWeDo
23.	2	Раздел 7 Механические модели «Футбол». (6 часов)	Проект «Футбол роботов» Конструирование нападающего. Программирование и тестирование модели. Измерение расстояния, подсчет голов и промахов. Игра	Модель «Нападающий» Программирование и тестирование модели. Игра.	Презентация (ЦОР «Основы робототехники») Инструкция (СD) Руководство пользователя WEDO ПервоРобот LEGOWeDo
24.	2		Проект «Футбол роботов» Конструирование вратаря. Программирование и тестирование модели. Игра	Модель «Вратарь» Программирование и тестирование модели. Игра.	Презентация (ЦОР «Основы робототехники») Инструкция (CD) Руководство пользователя WEDO
25	2		Проект «Футбол роботов» Конструирование болельщиков. Программирование и тестирование модели.	Модель «Ликующие болельщики» Командная игра «Футбольная игра роботов». Зачетное занятие.	Презентация (ЦОР «Основы робототехники») Инструкция (СD) Руководство пользователя WEDO Технологические

			Командная игра «Футбольная игра роботов». Зачетное занятие Игра.		карта занятия.
26.	2	Раздел 8 Механические модели «Приключения» . (6 часов)	Модель «Спасение самолета» Описывание приключения. Конструирование и программирование. Задачи для робота. Использование модели для выполнения задач	Модель «Спасение самолёта» Конструирование и программирование, выполнения задач	Инструкция (CD) Руководство пользователя WEDO ПервоРобот LEGOWeDo
27.	2		Модель «Спасение от великана» Описывание приключения. Конструирование и программирование. Задачи для роботов. Использование модели для выполнения задач	Проект «Спасение от великана». «Лыжник» Конструирование и программирование, выполнения задач	Руководство пользователя WEDO ПервоРобот LEGO WeDo
28	2		Модель «Непотопляемый парусник" Описывание приключения. Конструирование и программирование. Задачи для роботов. Использование моделей для выполнения задач	Проект «Непотопляемый парусник» «Подводная лодка» Конструирование и программирование, выполнение задач	Инструкция (CD) Руководство пользователя WEDO ПервоРобот LEGO WeDo
29.	2	Раздел 9 (10 часов) Идем дальше. Создание сложных моделей Конструирование и	Конструирование и программирование сложных моделей по картинке, видеоролику с использованием двух моторов, двух датчиков наклона и расстояния,	Создание проекта «Умный дом» Задачи для роботов. Анализ программ	Инструкция (CD) Компьютер. П.О. ЦДТТ- ЛЕГО -WEDO конструктор lego wedo

30.	2	программирование сложных моделей	способных выполнять сложные действия. Задачи для роботизированного проекта.	Decrease was a superior of the	. Изметрическа Перез Работ
30.	2		Конструирование и программирование моделей с использованием моторов и датчиков, способных выполнять сложные действия. Задачи для роботов.	Военная и космическая техника. (Календарная дата-День космонавтики) «Танк» «Вертолеты» «Самолеты» «Космический челнок»	Конструктор- ПервоРобот LEGO WeDo TM. Компьютер. П.О. ЦДТТ- ЛЕГО –WEDO Картинки по сбору модели
31.	2		Модель «Чертово колесо" Описывание приключения. Конструирование и программирование. Задачи для робота. Использование модели для выполнения задач Зачет	Проект «Чертово колесо" Конструирование и программирование, выполнения задач	Инструкция (CD) Руководство пользователя WEDO ПервоРобот LEGO WeDo рабочие листы
32.			Конструирование и программирование сложных моделей. Проект «Умный автомобиль» Задачи для роботов.	Проект «Умный автомобиль» «Бетмобиль» «Драгстер» «Буллит» Задачи для роботов. Анализ программ	Инструкция (CD) Компьютер. П.О. ЦДТТ- ЛЕГО -WEDO конструктор lego wedo
33.	2		Конструирование и программирование сложных моделей. Проекты рабочие машины: «Башенный кран», «Грузоподъемник», «Бульдозер» Задачи для роботов. Анализ программ	Проекты рабочие машины: «Башенный кран», «Грузоподъемник» «Бульдозер» Задачи для роботов. Анализ программ	Инструкция (CD) Компьютер. П.О. ЦДТТ- ЛЕГО -WEDO конструктор lego wedo

34.	2		Раздел 10 Творческие проекты и соревновательная робототехника (2 часа)	Интеллектуальные роботы. Роботы - помощники человека, роботы - артисты, Творческое проектирование на свободную тематику по замыслу. Задачи для роботов. Индивидуальные и групповые проекты.	Интеллектуальные роботы. Разработка творческих проектов на свободную тематику «Фантазируй!»	Компьютер. П.О. ЦДТТ- ЛЕГО -WEDO конструктор lego wedo
35.	2		Раздел 11 Итоговые занятия. Зачеты. (4 часа)	Правила робототехнических соревнований. Сборка моделей по видеоролику в соревновательной робототехнике. Подготовка проектов к соревнованию «Юный конструктор».	Правила соревнований. Сборка моделей по видеоролику в соревновательной робототехнике.	Презентация. Компьютер. П.О. ЦДТТ- ЛЕГО -WEDO конструктор lego wedo видеоролик
36.	2			Сборка моделей по видеоролику в соревновательной робототехнике. Итоговый контроль. Контроль качества освоения знаний.	Итоговое занятие Итоговый контроль Сборка моделей по видеоролику в соревновательной робототехнике.	Компьютер. П.О. ЦДТТ- ЛЕГО -WEDO конструктор lego wedo видеоролик, карты заданий
37	2			Итоговое занятие	Итоговое занятие Подведение итогов.	
Итог	0	72 часа				

Утверждаю
Директор СПбГЦДТТ
А.Н. Думанский

РАБОЧАЯ ПРОГРАММА

к дополнительной общеобразовательной общеразвивающей программе

«Образовательная робототехника»

2023 - 2024____учебный год

Год обучения _2__ Группа № __2___

> Кутузова Г.Н., педагог дополнительного образования СПбГЦДТТ

Рабочая программа 2 года обучения

Рабочая программа 2-го года обучения составлена на основе дополнительной общеобразовательной общеразвивающей программы «Образовательная робототехника».

Особенности организации образовательного процесса.

Программа 2 года рассчитана на учащихся 9-10 лет. Программа 2 года обучения рассчитана на 72-74-часа в год. Продолжительность занятий — 1 раз в неделю, по 2 академических часа (90 минут). Численность групп определяется в соответствии с санитарными нормами, предъявляемыми в аудитории робототехники. На одного учащихся приходится одно специально оборудованное, рабочее место. Кабинет оснащен необходимым оборудованием, компьютерами, проектором и интерактивной доской. Программа адаптирована под образовательные конструкторы LEGO Education 9686 «Технология и физика», 9641 Пневматика», 9688 «Альтернативные источники энергии»

Основной **целью** программы является создание условий для формирования общей культуры обучающихся через реализацию их творческих идей в процессе конструирования, программирования и исследования моделей роботов с использованием современных компьютерных технологий.

Для достижения поставленной цели в рамках настоящей программы решаются следующие задачи.

Обучающие

- Обучить учащихся комплексу базовых технологий, применяемых при создании роботов, основным принципам механики.
- Обучить учащихся решению ряда инженерных задач, проектировать и реализовать техническое решение в виде модели, механизма, конструкции, способной к функционированию.
- Изучить правила соревнований по Лего конструированию.

Развивающие

- Развивать навыки конструирования и изобретательность
- Развивать мелкую моторику, внимательность, аккуратность;
- Развивать навыки проектного мышления;

Воспитательные

- Повышать мотивацию учащихся к изобретательству и созданию собственных роботизированных систем
- Воспитывать у учащихся стремление к получению качественного законченного результата
- Воспитывать умение работать в команде, взаимодействовать с другими людьми, эффективно распределять обязанности между членами команды.

Особенности организации образовательного процесса

Занятия второго года обучения включают четыре крупных раздела «Физика роботов», «Пневматика», «Альтернативные источники энергии» и «Творческое проектирование. конструирования МАКЕЯ», каждый из которых имеет свою предметную область, на которой фокусируется деятельность учащихся. Все занятия с образовательными конструкторами предусматривают, что учебный процесс включает в себя четыре составляющие: Установление взаимосвязей, Конструирование, Рефлексия и Развитие. Устанавливая связи между уже имеющимся и новым опытом, полученным в процессе обучения, ребенок приобретает знания. Педагог ставит новую техническую задачу, решение которой ищется совместно. Обучение в процессе практической деятельности, предполагает создание моделей и реализацию идей путем конструирования.

При необходимости, выполняется эскиз конструкции. Далее учащиеся работают в группах по два человека. В зависимости от задач, на занятиях используются разные виды Исследование, проводимое конструирования: под руководством предусматривающее пошаговое выполнение инструкций, в результате которого дети строят модель, используемую для обработки данных. По выполнению задания учащиеся делают выводы о наиболее эффективных механизмах и конструкциях. Рефлексия детям дается возможность обдумать то, что они построили. Размышляя, дети устанавливают связи между полученной и новой информацией и уже знакомыми им идеями, а также предыдущим опытом. На этом этапе в каждом задании детям предлагается некоторый объем вопросов, побуждающих установить взаимосвязи между опытом, который они получают в процессе работы над заданием, и тем, что они знают в реальном мире. На этапе Развитие детям предлагаются дополнительные творческие задания по конструированию или исследованию. Процесс обучения состоит из теоретической и практической частей, причем большее количество времени занимает практическая часть, направленная на творческую деятельность обучаемых.

Содержание 2 года обучения

Раздел 1. Физика роботов

Теория: Инструктаж по ТБ. Знакомство с составом набора ЛЕГО «Технология физика».

Практика: Конструирование по образцу. Сборка моделей по замыслу.

Тема 1. Простые механизмы

Теория: Простые механизмы. Рычаг. Правило рычага Колесо и ось. Блок, виды. Наклонная плоскость. Винт. Клин. Подвижный, Неподвижный. Выигрыш от применения рычага. Выигрыш в силе. Выигрыш в использование простых механизмов.

Практика: Конструирование простых механизмов. Исследование принципов работы.

Тема 2. Механизмы. Конструкции

Теория: Зубчатая передача Кулачок Конструкция, виды. Храповой механизм с собачкой. Конструкция, виды. Принцип работы. Сила трения

Практика: Сборка механизма, конструкции. Исследование влияния смены передачи на скорость и направление движения машины.

Тема 3. Базовые модели

Теория: Элементы конструкции и безопасность, выбор материалов. Растягивающие и сжимающие силы.

Практика: Сборка моделей по схеме.

Сборка модели и исследование влияния смены передачи на скорость машины. Рычажные весы. Сборка модели весов. Башенный кран. Сбор и анализ данных Пандус. Исследование зависимости затрачиваемого усилия от угла наклона и наличия колес. Равновесие. Гоночный автомобиль. Исследование влияния смены передачи на скорость машины.

Тема 4. Творческие задания – по технологии и физике

Теория: Принцип действия. Условие дальности полета. Силы, воздействующие на объект

Применение методов моделирования для решения задач проектирования. Принцип устойчивости.

Практика: Проектирование и построение: Катапульта. Ручная тележка. Лебедка. Карусель. Мост. Исследование. Определение параметров.

Тема 5: Занятия по базовым моделям. Решение реальных проблем

Теория: Свободное качение Физические величины. Расстояние, Время, масса, скорость, Энергия. Единица измерения, цена деления, предел измерения. шкала измерения. Измерительный круг. Анализ.

Практика: Проектирование и построение. Исследования. Определение и анализ параметров измеренных величин. Игра «Большая рыбалка» Мусороуборочная машина Почтовые весы. Таймер. Ветряная мельница. Буер. Машины с электродвигателем. Гоночный автомобиль- 2. Робопес. Скороход. Тягач. Творческие задания. Ралли по холмам. Ручной миксер. Творческое задание. Летучая мышь

Раздел 2. Пневматика

Тема 1. Основные принципы. Модели

Теория: Пневматика. Основные принципы. Пневматические устройства и узлы, составные части пневматической системы. Применение пневматических механизмов.

Практика: Проектирование и построение. Рычажный подъёмник, Пневматический захват, Штамповочный пресс. Манипулятор «Рука». Исследование.

Тема 2. Творческие задания по пневматике

Теория: Задача для конструирования. Алгоритм подготовки и защиты проектов.

Практика: Проектирование и построение Динозавр. Огородное пугало Общий проект - Производственная линия. Конструирование пневмосистем. Применение пневматического механизма

Раздел 3. «Альтернативные источники энергии»

Тема 1. Возобновляемые источники энергии.

Теория: Возобновляемые источники энергии. Оборудование. Правила безопасной эксплуатации Устройства с переходом потенциальной энергии в кинетическую.

Практика: Проектирование и построение. Генератор с ручным приводом.

Тема 2. Занятия с базовыми моделями. Конструирование моделей с использованием альтернативных источников энергии

Теория: Энергия Солнца, ветра и воды. Передача и сохранение энергии. Использование энергии.

Практика: Проектирование и построение. Гидротурбина. Солнечный автомобиль. Ветряная мельница, Судовая лебедка, газонокосилка

Тема 3. Творческие задания Конструирование моделей с использованием альтернативных источников энергии

Теория: Преобразование энергии. Использование альтернативных источников энергии

Практика: Творческие задания Конструирование моделей с использованием альтернативных источников энергии «Электрический ветродвигатель», «Умный дом».

Раздел 4. Творческое проектирование. конструирования MAKER Процесс инженерного проектирования и конструирования MAKER.

Теория: Изучение процесса инженерного проектирования и конструирования МАКЕК Задания для проекта. Алгоритм подготовки и представления проекта. Соревновательная робототехника. Подготовка к соревнованиям: конструирование моделей соревновательной робототехники. Правило соревнований, номинация «Механическое сумо». Задачи для робота.

Практика: Творческое проектирование «Фантазируй!» Подготовка творческих проектов «Фантазируй!» Дополнительные и творческие задания для проектов. Проектирование и построение. Конструирование моделей соревновательной робототехники. Создания аксессуара для цифрового устройства, рекурсивного рисунка, фуникулера, помощника по дому, в классе.

Раздел 5. Итоговые занятия

Теория: Итоговый контроль

Практика: Представление творческих проектов «Фантазируй!» Участие в соревновательной робототехнике.

Планируемые результаты второго года обучения

Личностные результаты

Обучающийся должен:

- уметь критически относиться к информации, воспринимать ее избирательно;
- уметь осмысливать мотивы своих действий при выполнении заданий;
- обладать самостоятельностью суждений, независимостью и нестандартностью мышления:
- обладать чувством справедливости, ответственности;
- положить начало своему профессиональному самоопределению, ознакомиться с миром профессий, связанных с робототехникой.

Метапредметные результаты

Обучающийся должен обладать:

- умением осуществлять поиск информации на каждом уровне: в информационной среде образовательного учреждения, в индивидуальных информационных образовательных ресурсах;
- умением использовать средства информационных и коммуникационных технологий для решения коммуникативных, познавательных и творческих задач;
- умением ориентироваться на разнообразие способов решения задач;
- умением осуществлять анализ объектов с выделением существенных и несущественных признаков;
- умением проводить сравнение, классификацию по заданным критериям;
- умением строить логические рассуждения в форме связи простых суждений об объекте;
- умением устанавливать аналогии, причинно-следственные связи;
- умением моделировать, преобразовывать объект из чувственной формы в модель, где выделены существенные характеристики объекта (пространственнографическая или знаково-символическая);
- владение монологической и диалогической формами речи;
- умение синтезировать, составлять целое из частей, в том числе самостоятельное достраивание с восполнением недостающих компонентов;
- умением выбирать основания и критерии для сравнения, классификации объектов; коммуникативными умениями, такими как:
- умение аргументировать свою точку зрения на выбор оснований и критериев при выделении признаков, сравнении и классификации объектов;
- умение выслушивать собеседника и вести диалог;
- умение признавать возможность существования различных точек зрения и права каждого иметь свою;
- умение планировать учебное сотрудничество с педагогом и сверстниками определять цели, функций участников, способов взаимодействия;
- умение осуществлять постановку вопросов инициативное сотрудничество в поиске и сборе информации;
- умение разрешать конфликты выявление, идентификация проблемы, поиск и оценка альтернативных способов разрешения конфликта, принятие решения и его реализация;
- умение с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации.

Предметные результаты

Обучающийся должен обладать:

- знанием элементов конструкторов «Технология и физика», «Пневматика» и «Альтернативные источники энергии», владением терминологией;
- знанием основных принципов механической передачи движения; пневматических узлов, измерительных приборов-конструкций и методов измерения. Видов возобновляемых источников энергии.
- умением работать по предложенным инструкциям;
- умением создавать реально действующие модели механизмов и конструкций по разработанной схеме и по собственному замыслу;
- умением творчески подходить к решению инженерной задачи; умения довести решение задачи до работающей модели;
- способностью к самостоятельному решению ряда задач с использованием образовательных робототехнических конструкторов и к созданию творческих проектов;

Календарно-тематический план по программе «Образовательная робототехника» 2 год обучения

Nº	Кол-	Дата		Разделы	Тема занятия	Соответствующая	Методическое
занят	В0	заняти	ıй		(из содержания)	конкретная тема	обеспечение занятия
ИЯ	часов	ПО	по			занятия	
		плану	факту			(для журнала)	
1.	2			Раздел 1 Физика роботов – (50ч) Введение - 2ч.	Вводное занятие. Инструктаж по ТБ. Физика роботов. Знакомство с составом набора ЛЕГО «Технология физика». Практическое задание - сборка модели по замыслу	Введение. Инструктаж по ТБ. Физика роботов. Знакомство с составом набора «Технология физика»	Инструкции по технике безопасности. Наборы ЛЕГО «Технология физика»
2.	2			<u>Тема 1</u> Механизмы Конструкции Принципы действия простых механизмов – 6ч	Входной контроль. Построение простейшей конструкции по образцу. Простые машины Рычаг. Колесо и ось. Блок Использование колёс и осей Выигрыш от применения рычага, ременных передач и блоков	Входной контроль. Построение простейшей конструкции механизма. Простые машины. Рычаг. Колесо и ось. Блок.	Инструкция для изучения робототехники: «Технология физика», Руководство пользователя «Технология физика», LEGO Mindstorms
3.	2				Простые механизмы. Рычаг. Наклонная плоскость, клин. Винт.	Простые механизмы. Рычаг. Наклонная плоскость, клин. Винт.	Инструкция для изучения робототехники: «Технология физика», Руководство пользователя «Технология физика»
4.	2				Зубчатая передача Использование шестерен	Конструкция, виды Зубчатая передача	Презентация (ЦОР «Основы робототехники»).

			Кулачок Конструкция, виды Принцип работы. Храповой механизм с собачкой. Конструкция, виды Принцип работы	Кулачок Храповой механизм. Принцип работы.	Технологические карта занятия; Конструкторы LEGO Mindstorms «Технология физика», Руководство пользователя-инструкции Технологические карта занятия
5.	2	Тема 2: Базовые модели Решение реальных проблем –30 ч	Элементы конструкции и безопасность, выбор материалов. Растягивающие и сжимающие силы.	Элементы конструкции. Действующие силы. Устойчивость конструкций	Презентация (ЦОР «Основы робототехники»). Технологические карта занятия; Конструкторы LEGO Mindstorms «Технология физика», Руководство пользователя-инструкции
6.	2		Построение мусороуборочной машины	Построение мусороуборочной машины	Технологические карта 1A занятия; Конструкторы LEGO Mindstorms «Технология физика»,
7.	2		Игра «Большая рыбалка» Проектирование и построение. Определение правил и критериев. Применение узлов механизма.	Проектирование и построение удочки. Игра «Большая рыбалка»	Презентация (ЦОР). Технологические карта 2А занятия; Компьютер.
8.	2		Механический молоток. Проектирование и построение. Определение параметров. Применение.	Механический молоток. Частота ударов.	Презентация (ЦОР «Основы робототехники»). Технологические карта занятия; Конструкторы LEGO Mindstorms «Технология физика», Руководство пользователя4А
9.	2		Свободное качение Проектирование и построение. Определение	Свободное качение. Измерение. Шкала измерения	Презентация (ЦОР «Основы робототехники»). Технологические карта 3A

10		параметров движения. Анализ.	TH.	занятия; Конструкторы LEGO Mindstorms «Технология физика», Руководство пользователя
10.	2	Измерительная тележка. Проектирование и построение. Определение измеряемых параметров. Величина, единица измерения, цена деления, предел измерения. шкала измерения. Измерительный круг.	Измерение. Измерительная тележка. Определение параметров.	Презентация (ЦОР «Основы робототехники»). Технологические карта занятия; Конструкторы LEGO Mindstorms «Технология физика», Руководство пользователя
11.	2	Почтовые весы. Проектирование и построение. Определение измеряемых параметров. Величина, единица измерения, цена деления, предел измерения. шкала измерения. Измерительный круг.	Измерение массы. Измерительный круг. Почтовые весы	Презентация (ЦОР «Основы робототехники»). Технологические карта занятия; Конструкторы LEGO Mindstorms «Технология физика», Руководство пользователя
12.	2	Таймер. Проектирование и построение. Определение измеряемых параметров. Величина, единица измерения, цена деления, предел измерения. шкала измерения. Измерительный круг.	Измерение времени. Таймер. Измерительный круг.	Презентация (ЦОР «Основы робототехники»). Технологические карта занятия; Конструкторы LEGO Mindstorms «Технология физика», Руководство пользователя
13.	2	Ветряная мельница Проектирование и построение.	Энергия. Ветряная мельница. Проектирование и	Презентация (ЦОР «Основы робототехники»). Технологические карта

14.	2		Буер. Проектирование и построение.	построение. Энергия. Буер. Проектирование и построение.	занятия; Конструкторы LEGO Mindstorms «Технология физика», Руководство пользователя Презентация (ЦОР «Основы робототехники»). Технологические карта занятия; Конструкторы LEGO Mindstorms «Технология физика», Руководство пользователя
15.			Энергия. Инерционная машина. Проектирование и построение.	Инерционная машина. Проектирование и построение.	Презентация (ЦОР «Основы робототехники»). Технологические карта занятия; Конструкторы LEGO Mindstorms «Технология физика», Руководство пользователя
16.			Машины с электродвигателем. Тягач. Скороход(А-Б11;13)	Машины с электродвигателем. Тягач	Технологические карта занятия
17.			Машины с электродвигателем. Гоночный автомобиль-2Сборка модели и исследование влияния смены передачи на скорость машины. Сила трения. Робопе с(АБ 12;14)	Машины с электродвигателем. Гоночный автомобиль- 2	Инструкция для изучения робототехники: «Технология физика», Руководство пользователя «Технология физика», LEGO Mindstorms
18.			Рычажные весы. Сборка модели весов. Исследование.	Рычажные весы. Исследование.	Инструкция для изучения робототехники: «Технология физика», Руководство

19.			Башенный кран. Сбор и анализ данных. Пандус. Исследование зависимости затрачиваемого усилия от угла наклона и наличия колес. Равновесие.	Башенный кран	пользователя «Технология физика», LEGO Mindstorms Инструкция для изучения робототехники: «Технология физика», Руководство пользователя «Технология физика», LEGO Mindstorms
21.	2	Тема 4: Творческие задания – по технологии и физике - 12 ч	Древнее орудие. Катапульта. условие дальности полета. Ручная тележка. Ручной миксер Проектирование и сборка. Принцип действия Применение методов моделирования для решения задач проектирования.	Катапульта. Дальность полета Ручная тележка Проектирование и сборка. Принцип действия	Инструкция для изучения робототехники: «Технология физика», Руководство пользователя «Технология физика», LEGO Mindstorms Технологические карта занятия; Конструкторы LEGO Mindstorms «Технология физика», Руководство пользователя.
22.	2		Применение методов моделирования для решения задач проектирования. Лебедка. Магический замок. Подъемник. Принцип действия Проектирование и сборка.	Творческие задания. Лебедка. Магический замок. Подъемник.	Технологические карта занятия; Конструкторы LEGO Mindstorms «Технология физика», Руководство пользователя

23	2		Силы, воздействующие на объект. Карусель. Летучая мышь. Принцип действия и назначения модели.	Творческие задания. Карусель. Летучая мышь. Проектирование и сборка.	Технологические карта занятия; Конструкторы LEGO Mindstorms «Технология физика», Руководство пользователя
24.	2		Наблюдательная вышка. Мост. Проектирование и построение. Определение параметров. Принцип устойчивости. Проектирование и построение.	Творческие задания. Наблюдательная вышка. Мост.	Презентация (ЦОР «Основы робототехники»). Технологические карта занятия; Конструкторы LEGO Mindstorms «Технология физика», Руководство пользователя
25	2		Творческие задания. Ралли по холмам. Почтовая штемпельная машина. Проектирование и построение.	Творческие задания. Ралли по холмам. Почтовая штемпельная машина.	Презентация (ЦОР «Основы робототехники»). Технологические карта занятия; Конструкторы LEGO Mindstorms «Технология физика», Руководство пользователя
26.	2	Раздел 2 Пневматика-(10 ч) Тема 1 Основные принципы. Модели - 6 ч	Пневматика. Основные принципы Пневматические устройства и узлы, составные части пневматической системы. Применение пневматических механизмов. Рычажный подъёмник.	Рычажный подъёмник, Пневматические устройства и узлы,	Презентация (ЦОР «Основы робототехники»). Технологические карта занятия; Наборы LEGO Mindstorms «Пневматика», Руководство пользователя-инструкции
27	2		Пневматический захват, Манипулятор «Рука Принципы работы. Применение	Пневматический захват, Манипулятор «Рука	Презентация (ЦОР «Основы робототехники»). Технологические карта занятия; Наборы LEGO

			пневматического механизма.		Mindstorms «Пневматика», Руководство пользователя
28	2		Штамповочный Пресс. Применение пневматического механизма.	Штамповочный пресс на пневматике.	Презентация (ЦОР «Основы робототехники»). Технологические карта занятия; Наборы LEGO Mindstorms «Пневматика»,
29	2	Тема 2 Творческие задания по пневматике - 4 ч	Динозавр. Задача для конструирования. Применение пневматического механизма.	Динозавр с пневматическим механизмом.	Руководство пользователя Презентация (ЦОР «Основы робототехники»). Технологические карта занятия; Наборы LEGO Mindstorms «Пневматика»,
30	2		Огородное пугало. Задача для конструирования. Применение пневматического механизма.	Огородное пугало с пневматическим механизмом.	Презентация (ЦОР «Основы робототехники»). Технологические карта занятия; Наборы LEGO Mindstorms «Пневматика»,
31	2	Раздел 3 Альтернативны е источники энергии – (10 ч) Тема 1 Возобновляемые	Возобновляемые источники энергии. Оборудование. Правила безопасной эксплуатации Устройства с переходом потенциальной энергии в кинетическую	Возобновляемые источники энергии. Передача энергии. Генератор с ручным приводом	Презентация (ЦОР «Основы робототехники»). Технологические карта занятия; Наборы LEGO Mindstorms «Альтернати вные источники энергии», Руководство пользователя
32	2	источники энергии Занятия с базовыми моделями	Виды энергии. Солнечная энергия. Ветряная турбина. Гидротурбина	Ветряная турбина Солнечный автомобиль. Гидротурбина	Презентация (ЦОР «Основы робототехники»). Технологические карта занятия
33	2	Конструировани е моделей с использованием альтернативных	Судовая лебедка. Газонокосилка	Судовая лебедка.	Презентация (ЦОР «Основы робототехники»). Технологические карта занятия

			источников энергии -6ч .			
34	2		<u>Тема 2</u>	Подготовка проектов	Световое табло.	Презентация (ЦОР «Основы
				«Фантазируй!» Световое	Прожектор для спортзала	робототехники»).
			Творческие	табло Прожектор для		Технологические карта
			задания	спортзала		занятия; Наборы LEGO
			Конструировани			Mindstorms «Альтернативные
			е моделей с			источники энергии»,
35	2		использованием	Подготовка проекта	Электрический	Технологические карта
			альтернативных	Электрический	вентилятор	занятия; Наборы LEGO
			источников	вентилятор		Mindstorms «Альтернативные
			энергии -4ч.	-		источники энергии»,
36.	2		Раздел 4	Итоговый контроль.	Итоговое занятие.	Компьютер. П.ОЛЕГО EV3 и
				Итоговое занятие.	Представление творческих	Robolab; Наборы LEGO
			Итоговые	Представление творческих	проектов.	Mindstorms «EV-3» и артикул
			занятия-2 ч	проектов.		9797. Презентации.
	Итого	72 часа				

Оценочные и методические материалы Требования к уровню освоения дополнительных общеобразовательных программ

Уровень	Пок	азатели	Целеполагание	Результат освоения
освоения	Срок	Максималь		уровня (показатели
программы	реализа-	ный объем		результативности)
	ции	программы		Требования к
		(в год)		результату
Базовый	2 года	В	Создание условий для	Освоение
		соответств	личностного	программы;
		ии с	самоопределения и	Презентация
		учебным	самореализации;	результатов на
		планом	обеспечение процесса	уровне района,
			социализации и адаптации	города;
			к жизни в обществе;	Участие учащихся в
			выявление и поддержка	районных и
			детей, проявивших	городских
			выдающиеся способности;	мероприятиях;
			развитие у обучающихся	наличие призеров и
			мотивации к творческой	победителей в
			деятельности интереса к	районных
			научной и научно-	
			исследовательской	
			деятельности.	

Контроль результатов обучения

- В течение курса предполагаются регулярные зачеты, на которых решение поставленной заранее известной задачи принимается в свободной форме (не обязательно предложенной преподавателем). При этом тематические состязания роботов также являются методом проверки, и успешное участие в них освобождает от соответствующего зачета.
- По окончании курса учащиеся защищают творческий проект, требующий проявить знания и навыки по ключевым темам. Творческие проекты обучающиеся защищают в виде презентации, видеороликов, демонстрации функциональности модели и ответов на вопросы судей.
- По окончании каждого года проводится выходной мониторинг, а в начале следующего для вновь поступающих входной мониторинг.
- Кроме того, полученные знания и навыки проверяются на открытых конференциях, конкурсах и состязаниях, куда направляются наиболее успешные обучающиеся.

ЛИТЕРАТУРА ДЛЯ УЧАЩИХСЯ:

- 1. Копосов Д.Г., Первый шаг в робототехнику: практикум рабочая тетрадь. / Д.Г.Копосов М.: БИНОМ. Лаборатория знаний, 2015 87 с.
- 2. Филиппов С.А. Робототехника для детей и родителей. С- Пб, «Наука», 2016г.
- 3. Каталоги инструкции к моделям «Простые механизмы», конструирование и программирование в программе «WEDO», «Технология и физика», «Пневматика», «Альтернативные источники энергии».

ЛИТЕРАТУРА ДЛЯ учителя:

- 1. Копосов М.: БИНОМ. Лаборатория знаний, 2015 286 с.
- 2. Филиппов С.А. Робототехника для детей и родителей. С- Пб, «Наука», 2016г.
- 3. Методическое пособие по использованию наборов «Простые механизмы», моторные механизмы, конструирование и программирование в программе «WEDO», «Технология и физика», «Пневматика», «Альтернативные источники энергии».
- 4. Комарова Л. Г. «Строим из LEGO» (моделирование логических отношений и объектов реального мира средствами конструктора LEGO). М.; «ЛИНКА ПРЕСС», 2001.

Информационно-коммуникативные средства:

Видео-, аудиоматериалы:

- 1. ПервоРобот LEGO® WeDoTM книга для учителя [Электронный ресурс]. 1. Живой журнал LiveJournal справочно-навигационный сервис.
- 2. Компакт-диски: Методическое пособие по использованию наборов «Простые механизмы», моторные механизмы, конструирование и программирование в программе «WEDO», ПервоРобот LEGO® WeDoTM книга для учителя, «Технология и физика», «Пневматика», «Альтернативные источники энергии».

Цифровые ресурсы

Каталог сайтов по робототехнике - полезный, качественный и наиболее полный сборник информации о робототехнике. [Электронный ресурс] — Режим доступа: свободный:

http://www.gruppa-prolif.ru/content/view/23/44/

http://robotics.ru/

http://moodle.uni-altai.ru/mod/forum/discuss.php?d=17

http://ar.rise-tech.com/Home/Introduction

http://www.prorobot.ru/lego.php