САНКТ-ПЕТЕРБУРГСКИЙ ГОРОДСКОЙ ЦЕНТР ДЕТСКОГО ТЕХНИЧЕСКОГО ТВОРЧЕСТВА

РАССМОТРЕНО на педагогическом совете СПбГЦДТТ Протокол № 1 от 30 августа 2023 г.

УТВЕРЖДАЮ Приказом № 71/2 от 31.08.2023 Директор СПбГЦДТТ А.Н. Думанский

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

ЦЕНТР ИНЖЕНЕРНЫХ КОМПЕТЕНЦИЙ

Возрастной состав обучающихся: 13 – 17 лет Продолжительность обучения: 1 год

Разработчики: Пугачева Татьяна Сергеевна, методист СПбГЦДТТ, Логинова Нина Николаевна, методист СПбГЦДТТ, Юров Андрей Владимирович, педагог дополнительного образования СПбГЦДТТ

Программа разработана: 2016 г. Последняя корректировка: 2023 г.

1. Пояснительная записка

1.1. Вступление

Центр инженерных компетенций является структурным подразделением научнотехнического направления ЦДЮТТ. В рамках деятельности ЦИК будет происходить формирование проектных групп для комплексного практического применения знаний по направлениям робототехника, электротехника и 3D проектирование в рамках целевого проекта с привлечением профильных организаций (ВУЗ, НПО), направленных на освоение и (или) совершенствование компетенций, навыков, знаний.

Направленность программы – техническая.

Актуальность программы

Активное внедрение новых технологий на современных предприятиях, модернизация производства базируются на знаниях в области механики, электроники и микропроцессорной техники, информатики и компьютерного управления движением машин и агрегатов.

Внедрение современного оборудования на производстве обуславливает необходимость подготовки инженерных кадров нового поколения. В виду того, что робототехнические системы (РС) обязательно включают в себя компоненты различной природы, например, механические, электронные, программные, современный специалист должен обладать знаниями в соответствующих областях техники. Данные знания являются необходимыми как для инженеров-проектировщиков роботов, так и для инженеров, занимающихся их управлением и эксплуатацией.

Материально-техническая база ЦДЮТТ и творческий потенциал преподавателей ЦИК позволяет интегрировать общее и дополнительное образование путем реализации разноуровневых программ. Это позволит учащимся получить разносторонние знания в сфере как самой робототехники в целом, так и в сфере механики, электроники, систем управления и программного обеспечения. В процессе обучения они смогут овладеть базовыми навыками проектирования сложных систем, моделирования и программирования.

Создание условий для довузовской подготовки отвечают социальному запросу, способствуют формированию творческого подхода к технической деятельности, полученные знания и навыки могут послужить основой для выбранной ими профессии и, несомненно, будут полезны в предстоящей инженерной деятельности.

Цели:

- объединение перспективных направлений ЦДЮТТ и обеспечение актуальных потребностей Санкт-Петербурга и Ленинградской области в квалифицированных инженерных кадрах путем подготовки обучающихся в рамках модульных программ и реализации эффективной промышленно применимой проектной деятельности;
- эффективная подготовка выпускников школ к успешному поступлению в инженерные вузы по направлению мехатроника, электротехника, промышленное проектирование, маркетинг;
- введение основ подготовки в области администрирования, управления и организации процессов;
- поддержка одаренных детей в рамках подготовки и реализации технических проектов ЦИК.

Основные задачи центра:

- эффективное обучение детей в возрасте 10-17 лет по направлениям мехатроника, проектирование, электротехника, маркетинг;
- мотивация и подготовка к поступлению в инженерные вузы Санкт-Петербурга, довузовская подготовка.

Для реализации основных задач необходимо:

- ✓ переподготовка специалистов-педагогов по актуальным программам для успешного и комфортного освоения обучающимися целевых программ;
- ✓ формирование навыков проектной деятельности;
- ✓ формирование навыков натурной реализации разрабатываемых изделий, как макетной, так и выполняющей заложенные функции.

Адресат программы: обучающиеся ЦДЮТТ первого и второго года по специальностям мехатроника, робототехника, электротехника, проектирование в возрасте от 13 до 17 лет, обладающие базовыми знаниями по данным направлениям.

Объем и срок реализации программы:

Программа рассчитана на 8 часов в неделю, однако каждый год формируется рабочая программа, соответствующая по количеству часов производственному плану СПбГЦДТТ, количеству и качеству проектов, которые разрабатываются в ЦИК. Оплата идет по факту отработки, в связи с особенностями реализации программы.

Условия реализации программы

Условия формирования проектных групп:

Инженерные группы формируются из обучающихся 2-ой год в объединениях, входящих в кластер центра. В группе должны состоять обучающиеся разных направлений (мехатроника, робототехника, электротехника, проектирование).

Количество детей в проектной группе не должно превышать 4-5 человек, что является оптимальным для эффективной реализации технического проекта, так как будут представлены все направления инженерного кластера. Однако самих проектных групп может быть столько, сколько проектов реализуется ЦИКом в данный учебный год.

Особенности организации образовательного процесса

Процесс обучения осуществляется в очно-дистанционном формате. Возможна реализация программы с использованием сетевого и социального партнерства.

В центре организуются процессы эффективного взаимодействия трех основных инженерных направлений. Обучающиеся в течение года осваивают одну из основных программ ЦИК: «Основы инженерного проектирования робототехнических и мехатронных систем», «Основы инженерного 3D проектирования и промышленный дизайн» и «Основы проектирования и изготовления электротехнических систем». Эти программы являются базовыми для участия в проектных группах.

Мехатроника (первое направление) — это область науки и техники, основанная на синергетическом объединении узлов точной механики с электронными, электротехническими и компьютерными компонентами, обеспечивающими проектирование и производство качественно новых модулей, систем, машин и систем с интеллектуальным управлением их функциональными движениями.

Реализация данного направления базируется на программе «Основы инженерного проектирования робототехнических и мехатронных систем». Составитель А.В. Юров. Возрастной состав обучающихся: 13-17 лет. Продолжительность обучения: 2 года.

Данная программа вовлекает учащихся в использование технологий XXI века, способствует развитию их коммуникативных способностей, развивает навыки взаимодействия, самостоятельности при принятии решений, раскрывает их творческий потенциал.

В программе органично сочетаются три стержневые составляющие – это развитие интеллекта, конструирование техники, формирование здорового образа жизни:

- интеллект (знакомство с различными аспектами областей логики, математики, физики, логистики, риторики, истории, информатики, кибернетики и др.);
- техника (изучение моделирования и конструирования, управления, программного обеспечения, проектирования робототехнических систем и др.);
- здоровье (физическая нагрузка, самоконтроль самочувствия, выполнение нормативов общей физической подготовки, психологическая подготовка и др.).

Основным содержанием представленной программы является комплексное изучение различных аспектов робототехники, робототехнических систем (РС) и мехатроники.

Материально-техническая база включает в себя целевые дидактические комплексы по направлениям пневматика, гидравлика, электропривод, системы управления, мобильная робототехника, пропорциональная пневматика, промышленные производственные станции.

Так же программа реализует возможности дистанционного и удаленного обучения, в том числе удаленное программирование промышленных контроллеров в реальном времени.

Трехмерное проектирование (второе направление) — это качественно новый уровень выполнения проектных работ. Трехмерное моделирование проектируемого объекта позволяет работать над этим объектом сразу группе специалистов. Затраты времени на создание моделей проектируемого объекта в дальнейшем компенсируются более быстрой их корректировкой. Результат проектирования (разрезы, виды и др.) обобщается на основе максимально законченной модели, что существенно сокращает время выпуска проектной документации.

Реализация данного направления базируется на программе «Основы инженерного 3D-проектирования» составитель Ю.В. Савельева. Возрастной состав обучающихся: 13-17 лет, продолжительность обучения: 2 года.

В процессе освоения программы, обучающиеся развивают навыки конструирования, моделирования, способность видеть объекты в реальном объеме. Это позволяет глубже понять окружающий мир, формирует у обучающихся умение анализировать.

Навыки владения инновационным оборудованием, полученные в раннем возрасте, позволяют обучающимся более мобильно реагировать на технологические изменения окружающего мира, и, как следствие, формирует сильную личность, стремящуюся к внесению собственного вклада в мировой индустриальный прогресс.

Поскольку трехмерное проектирование является неотъемлемой частью технологического процесса любого производства, то и во время обучения необходимо внедрение полученных навыков в другие сферы знаний. Как следствие, отдельные блоки данной образовательной программы могут быть использованы в качестве дополнительной базы знаний при изучении промышленной и лего-робототехники. Совмещение знаний по разработке робототехнических систем и моделирования отдельных механизмов и деталей позволит расширить границы использования текущей материальной базы и выведет детские проекты на качественно новый уровень.

При реализации данной образовательной программы используется принцип «от простого к сложному», что позволяет создать условия для максимально продуктивного усвоения полученного материала. Постепенное усложнение задач ведет к наиболее активному развитию мыслительного процесса у обучающихся и оставляет большой запас для воплощения творческих идей. При этом практические занятия по каждой теме по схеме «от элементов – к системе в целом» приводят к формированию целостного изобретательского мышления.

Совокупность полученных теоретических знаний и практических навыков является основой для подготовки учащихся к конкурсам, научно-практических конференциям, соревнованиям профессионального мастерства различной степени значимости. В том числе становится возможным участие школьников в конкурсах, проводимых промышленными предприятиями страны.

Материально-техническая база включает в себя компьютерные рабочие места с инженерным комплексом Creo, SolidWorks, Proengineer, КОМПАС-3D.

Зона прототипирования оснащена фрезерными комплексами и 3 Дпринтерами.

Электротехника (третье направление) — область техники, связанная с получением, распределением, преобразованием и использованием электрической энергии. А также — с разработкой, эксплуатацией и оптимизацией электронных компонентов, электронных схем и устройств, оборудования и технических систем.

Реализация данного направления базируется на программе «Основы проектирования и изготовления электротехнических систем», составитель А.А. Спрут, С. А. Бакуло. Возрастной состав обучающихся: 10-16 лет, продолжительность обучения: 2 года.

С учетом современных тенденций к динамической модернизации промышленного комплекса РФ, необходимости решать задачи импортозамещения, дополнительное образование в области электротехники и радиоэлектроники сегодня является перспективным и может способствовать дальнейшему выбору специальности.

Для освоения данной программы используется современное оборудование, не имеющее аналогов в учреждениях дополнительного образования в Санкт-Петербурге. Высокотехнологичное современное оснащение позволяет обучающимся в доступной форме освоить знания и навыки, сопоставимые по уровню с применяемыми в данный момент на

отечественных промышленных производствах, и таким образом, получить практическое представление о специальности инженера-электротехника.

Материально-техническая база включает в себя современные рабочие места по направлению радиоэлектроника, целевые конструкторы для разных уровней подготовки, адаптированную для учебного заведения промышленную линию полного цикла производства и тестирования печатных плат.

На базе лабораторий мехатроники в рамках ЦИК реализована принципиально новая форма дистанционного обучения, основная идея которой состоит в обеспечении удаленного доступа не только к методическим материалам, но к реальным лабораторным стендам, в данном случае — к MPS. В 2007 году совместными усилиями, с участием компании ФЕСТО, была создана система взаимного дистанционного доступа обучающихся каждого центра через Интернет к оборудованию всех остальных университетов, участвующих в проекте.

Группы первого года обучения занимаются по выбранному направлению в рамках учебной программы. Так же в течение года участвуют в смежных/совместных семинарах по другим направлениям. Обязательно посещение централизованных семинаров по проектной деятельности.

Из обучающихся второго года формируются проектные сводные группы, назначается ведущее направление, руководитель проекта и «Заказчик». Заказчиком выступает курирующее предприятие, ВУЗ, научно- производственное объединение на основании договора о сотрудничестве.

Каждой группе назначается научный руководитель, который является педагогом одного из направлений. Направление выбирается в соответствии с основными целями и задачами проекта. Так же к каждой группе прикрепляется "курирующая" организация (ВУЗ, НПО, Промышленная компания), которая выдает актуальное техническое задание на разработку системы совместно с преподавателем/руководителем проекта. Задачи по организации учебного процесса, контроль сроков и т.д. ложатся на научного руководителя группы.

Группа выполняет полный цикл работы над проектом в течении учебного года используя материально-техническую, методическую, информационную базу СПБ ЦДТТ и курирующего предприятия.

Для успешного представления своих проектов группы второго года обучения изучают основы маркетинга. В рамках данного направления проектные группы получают знания о возможности представления, продвижения, презентации своих проектов. Обучение проходит в формате модульных семинаров.

Программа MBA-KiD позволит обучающимся в течении года познакомиться со специалистами- лидерами в своих областях, задать им интересующие вопросы, применить полученные знания на практике. Обязательным является применение полученных знаний в представлении своего проекта (один из принципов MBA).

Образовательные модули-блоки ведут специалисты в областях графического дизайна, презентации, ораторского искусства, экономики, логистики и маркетинга.

Результат деятельности проектных групп может и должен быть применен курирующей организацией. По итогам проекта каждый член проектной группы должен понимать и применять навыки организации проектной деятельности, использовать полученные знания в изобретательской деятельности и во «введении в специальность».

Формы проведения занятий:

Возраст обучающихся позволяет использовать широкий спектр форм занятий — для освоения теоретических положений используются лекции; для ознакомления с практикой проектирования и конструирования материал представляется в форме презентаций, таким образом визуальный ряд соединяется с информационными тезисами; для получения информации и инженерных навыков по смежным и дополнительным направлениям проводятся семинары и мастер-классы; в качестве итогового контроля учащиеся защищают свои проекты, в рамках профориентационных занятий проводятся экскурсии на предприятия и в ВУЗы.

Формы организации деятельности учащихся на занятии:

Фронтальная: работа педагога со всеми учащимися одновременно (объяснение нового материала, беседы и пр.)

Коллективная: организация проблемно-поискового или творческого взаимодействия между всеми детьми одновременно (в рамках семинаров, конференций, мастер-классов)

Групповая: организация работы в малых группах для выполнения определенных задач (работа учащихся в проектных группах)

Индивидуальная: организуется для работы с одаренными детьми для коррекции пробелов знаний и отработки отдельных навыков.

Материально-техническое оснащение

Для обеспечения учебного процесса в соответствии с данной программой лаборатория микроконтроллерной техники должна располагать следующим оборудованием и оснащением:

$N_{\underline{0}}$	Наименование	Количество
Π/Π		
1	Стол ученический	16
2	Стул ученический	16
3	Стол преподавательский	1
4	Стул преподавательский	1
5	Доска настенная (маркерная)	1
6	Компьютер с установленным программным обеспечением в виде операционной системы и пакета офисных программ	1
7	Мультимедийный проектор	1
8	Учебно-лабораторный комплект начальный уровень STC-ES-4F -3 производственных станции в виде «комплекта для сборки».	2
9	Дидактический Комплекс позиционирования изделий STC – ES – 1 Комплекс пневматический -Рабочая зона комплекса 500x500x1000 2 линейных привода - 4 варианта управления (Ручное, электрическое автоматизированное, электрическое, пневматическое)	2
10	Монтажный комплект для дидактического комплекса позиционирования изделий STC-ES-1-S -комплект кронштейнов -монтажный стол -технологическая рама для монтажа системы STC – ES– 1.	1
11	Лаборатория пневматических систем STC-ES-P-12 -Учебные стенды для сборки и изучения пневматических схем технологического оборудованияучебные комплекты по курсам (пневмоавтоматики, электропневмоавтоматики, пневмопривода, вакуумной техники)	2
12	Развивающий конструктор РОБОМАСТЕР	10
13	Набор «Простые механизмы»	15
14	Ресурсный набор Конструктор по началам робототехники ПервоРобот WeDo LEGO Education WeDo	15
15	Конструктор по началам робототехники ПервоРобот WeDo (базовый набор)	15

16	Набор средний ресурсный для конструктора по началам прикладной информатики и робототехники ПервоРобот NXT	15
17	Программное обеспечение для комплекта NXT 2,0Lego Дания	1
18	Базовый набор LEGO MINDSTORMS Education EV3	10
19	Базовый набор LEGO MINDSTORMS Education EV3	10
20	Конструктор TETRIX TM (базовый набор)	3
21	Конструктор TETRIX TM (ресурсный набор)	3
22	Комплект оборудования для конструирования LEGO	1

Кадровое обеспечение

В данном проекте постоянно задействованы педагоги трех инженерных направлений – электротехники, мехатроники и 3D проектирования. В процессе работы над конкретными проектами может возникнуть необходимость в привлечении специалистов по другим направлениям. На этом этапе включаются в работу проекта дополнительные педагоги.

Планируемые результаты освоения программы

Планируемые результаты — совокупность личностных качеств, метапредметных и предметных компетенций (знаний, умений, навыков, отношений), приобретаемых учащимися в ходе освоения программы.

Личностные:

- индивидуальные способности, связанные умением выражать чувства и отношения, критическим осмыслением и способностью к самокритике, с ценностным отношением учащихся к профессиональной деятельности;
- социальные навыки, связанные с процессами социальной активности, поведением в социуме, самоопределением, способностью работать в команде, адаптироваться к новым ситуациям.

Метапредметные:

- учебно-познавательная компетенция знания и умения по овладению функциональной грамотностью, использованием различных способов познавательной деятельности, планирования и самооценки;
- методологические компетенции способности организовывать время деятельности, планировать свою учебную деятельность, принимать решения, выстраивать алгоритмы решения технических задач (во время занятий, проектов, участия в соревнованиях и играх);
- коммуникативные компетенции знание способов взаимодействия, владение навыками работы в группе, самопрезентации и ведения дискуссии;
- информационные компетенции умение самостоятельно искать анализировать и отбирать необходимую информацию, преобразовывать, сохранять и передавать ее, навыки по интеграции информации из различных предметных областей (математики, физике, информатике, проектированию).

Предметные:

- технологические компетенции умения, связанные с использованием техники, навыки работы с компьютером и информационными сетями; лингвистические умения, (использование учебных стендов, наборов Lego, работа в Интернете и др.);
- когнитивные компетенции способности понимать и использовать знания из новых предметных областей (информатики, физики, основ программирования, логики) на практике; знания по основам профессии (техник, инженер, конструктор); способности к анализу и синтезу (работа с аппаратурой, схемами и т.д.).

2. Учебный план

No	2. Учеоный план Название раздела, темы	К	оличество	часов	Формы контроля
п/	1	Всего	Теория	Практика	
П			1	1	
1.	Вводное занятие. Инструктаж по ТБ.	4	2	0	Индивидуальное тестирование на знание ТБ и основ мехатроники
2.	Проектная технология: подбор тем, группы, этапы работы, особенности представления результата.	20	12	8	Лаб. работа «модуль открытия двери» или аналогичный для сформированной группы
3.	Формирование проектных групп и подготовка материальной базы.	16	10	6	Лаб. работа по совместной проектной деятельности (на взаимодействие).
4.	Формирование "карточки проекта".	22	14	8	Коллективная презентация "группы" по теме "Этапы проекта и возможные риски".
5.	Индивидуальная подготовка участников проектной группы.	20	12	8	Индивидуальные тесты из целевого курса.
6.	Диагностика и коррекция организационных, образовательных и методических рисков.	18	10	8	Игровой практический кейс для проектной группы
7.	План работы инженерных групп.	8	6	2	Лабораторная групповая работа "Целевой план проекта".
8.	Разработка технического решения.	24	10	14	Упрощенный QFD- анализ.
9.	Подтверждение технического решения.	16	6	10	Упрощенный квалиметрический анализ
10.	Техническая документация: терминология, основные теоретические положения.	20	8	12	Тест индивидуальный на знание КД и ИД
11.	Разработка технической документации по проекту.	20	10	10	Презентация тех. решения проекта.
12.	Изготовление элементной базы.	24	4	20	Действующие элементы конструкции, согласно плану.
13.	Диагностика и коррекция организационных,	10	6	4	Представления структурной схемы и плана риск- менеджмента

	образовательных и методических рисков.				
14.	Сборка проекта, тестирование и отладка изделия.	24	6	18	Квалиметрический анализ
15.	Подготовка презентации проекта и "паспорта проекта".	20	8	12	Предзащита проекта.
16.	Презентация проекта.	10	2	8	Представление готового изделия и защита своего проекта.
17.	Обратная связь, подведение итогов.	12	12	0	Встреча с заказчиком.
		288			
18.	Летний блок				
		32			
	Всего	320			

Календарный учебный график

Год	Дата начала	Дата	Всего	Количество	Режим занятий
обучен	обучения	окончания	учебных	учебных часов	
ΝЯ	ПО	обучения	недель		
	программе	по программе			
1 год	Вторая	По мере	40	320 часов по	8 часов в неделю
	неделя	выполнения		учебному	
	сентября	программы		расписанию	

3. Рабочая программа

Рабочая программа составлена на основе дополнительной общеобразовательной общеразвивающей программы «Учебная проектная деятельность в рамках Центра инженерных компетенций» технической направленности.

Центр инженерных компетенций является структурным подразделением научнотехнического направления ЦДЮТТ. В рамках деятельности ЦИК будет происходить формирование проектных групп для комплексного практического применения знаний по направлениям робототехника, электротехника и 3D проектирование в рамках целевого проекта с привлечением профильных организаций (ВУЗ, НПО), направленных на освоение и (или) совершенствование компетенций, навыков, знаний.

Цель программы:

Формирование у учащихся компетенций, необходимых для конструкторского решения инженерных задач.

Основные задачи:

Образовательные:

- Изучение основ принципов инженерного проектирования в применении к РС.
- Изучение основ программного обеспечения для управления роботами и ознакомление со специализированными языками программирования.
- Овладение основами практических навыков проектирования, создания и управления РС.
- Овладение основами практических навыков проектирования механизмов.
- Изучение способов промышленного производства деталей, сборки узлов и механизмов.
- Овладение приемами перевода (проецирования) трёхмерных моделей в двухмерные схемы и чертежи.
- ознакомление на практике с полным технологическим циклом создания радиоэлектронных устройств;
- овладение приемами реализации технических проектов.

Развивающие:

- развитие внимания, памяти, логического и инженерного мышления;
- формирование опыта проектной, конструкторской и технологической творческой деятельности;
- Развитие познавательной активности и способности к самообразованию.
- Развитие коммуникативных навыков при работе в проектных группах.
- Развитие личностного и профессионального самоопределения учащихся.

Воспитательные:

- Пробуждение интереса к изучению новых программ и инструментов, используемых в сферах производственной деятельности человека.
- Воспитание культуры поведения и бесконфликтного общения.
- Формирование основ здорового образа жизни.
- воспитание личной ответственности за порученное дело;
- воспитание умений социального взаимодействия со сверстниками и взрослыми при различной совместной деятельности;
- воспитание активной гражданской позиции, патриотизма и чувства гордости за достижения отечественной науки и техники.

Особенности организации образовательного процесса

В центре организуются процессы эффективного взаимодействия трех основных инженерных направлений. Обучающиеся в течение года осваивают одну из основных программ ЦИК: «Основы инженерного проектирования робототехнических и мехатронных систем», «Основы инженерного 3D проектирования и промышленный дизайн» и «Основы проектирования и изготовления электротехнических систем». Эти программы являются базовыми для участия в проектных группах.

Группы первого года обучения занимаются по выбранному направлению в рамках учебной программы. Так же в течении года участвуют в смежных/совместных семинарах по другим направлениям. Обязательно посещение централизованных семинаров по проектной деятельности.

Из обучающихся второго года формируются проектные сводные группы, назначается ведущее направление, руководитель проекта и «Заказчик». Заказчиком выступает курирующее предприятие, ВУЗ, научно- производственное объединение на основании договора о сотрудничестве.

Каждой группе назначается научный руководитель, который является педагогом одного из направлений. Направление выбирается в соответствии с основными целями и задачами проекта. Так же к каждой группе прикрепляется "курирующая" организация (ВУЗ, НПО, Промышленная компания), которая выдает актуальное техническое задание на разработку системы совместно с преподавателем/руководителем проекта. Задачи по организации учебного процесса, контроль сроков и т.д. ложатся на научного руководителя группы.

Группа выполняет полный цикл работы над проектом в течении учебного года используя материально-техническую, методическую, информационную базу СПб ЦДТТ и курирующего предприятия.

Результат деятельности проектных групп может и должен быть применен курирующей организацией. По итогам проекта каждый член проектной группы должен понимать и применять навыки организации проектной деятельности, использовать полученные знания в изобретательской деятельности и во «введении в специальность».

1. Вводное занятие. Инструктаж по ТБ.

Теоретическая часть:

Знакомство с группой учащихся. Структура и содержание занятий, основные цели.

Практическая часть:

Видеофильм о современных направлениях робототехники и мехатроники.

Первые шаги – тимбилдинг. Командная игра "Знакомство".

2. Проектная технология: подбор тем, группы, этапы работы, особенности представления результата.

Теоретическая часть:

Анализ входных/выходных параметров системы. Методики подбора специалистов в инженерную команду. Типовые этапы работы проекта. Формирование результата типового проекта.

Практическая часть:

Игра-модуль «TeamEngine». Тест в формате дополненной реальности «Этапы инженерного проекта»

3. Формирование проектных групп и подготовка материальной базы.

Теоретическая часть:

Пул специалистов проекта: типовые компетенции, квалификации и навыки. Методы организации командной деятельности. Локальный менеджмент инженерной группы. Основные компоненты материально-методической базы.

Практическая часть:

Видеофильм «Инженер-мехатроник, навыки, компетенции», игровое командное сплочение инженерной группы, SWOT-анализ инженерной группы, практическая работа «Формирования материально-методической базы проекта».

4. Формирование "карточки проекта".

Теоретическая часть:

Типовая структура карточки проекта. Методы анализа рисков на этапе формирования карточки проекта. Виды КП.

Практическая часть:

Практическая работа «КП для целевого инженерного проекта». D-анализ рисков проекта на основе практической работы.

5. Индивидуальная подготовка участников проектной группы.

Теоретическая часть:

Методы выявления необходимых навыков и знаний. Элективные курсы по выбранным направлением в сводных группах (мехатроника, пневмоавтоматика, СУ, программирование контроллеров, электротехника, электропривод, методы анализа и эксперимент, пневмологика)

Практическая часть:

Станочная практика 3dпечать (идея — эскиз — модель — прототип - изделие). Станочная практика лазерная резка ЧПУ (идея — эскиз — модель — прототип - изделие).

6. Диагностика и коррекция организационных, образовательных и методических рисков.

Теоретическая часть:

Виды рисков в проекте, анализ рисков проекта, QFDанализ, квалиметрический анализ.

Практическая часть:

Практическая работа «Анализ рисков типового изделия» (используются изготовленные в блоке 5 изделия). Игра-соревнование «Risk-Leader».

7. План работы инженерных групп.

Теоретическая часть:

Основы менеджмента локальной инженерной группы, методы взаимодействия с материально-методической базой и «заказчиком» проекта.

Практическая часть:

Итоговый тест блока 1. (На вопросы блока развернуто отвечает инженерная группа). Тест построен с учетом необходимых и возможных знаний всех членов инженерной группы.

8. Разработка технического решения.

Теоретическая часть:

Методы разработки технического решения. Основы патентного поиска.

Практическая часть:

Игровой интенсив «ТРИЗ. От идеи к реализации». Практическая работа «ТР целевого проекта».

9. Подтверждение технического решения.

Теоретическая часть:

Эксперимент. Понятие, виды, результат. Апробация и тестирование тех. решения.

Практическая часть:

Лабораторная работа «Техническое решение ОК/NOK».

10. Техническая документация: терминология, основные теоретические положения.

Теоретическая часть:

Виды и назначение основных частей технической документации. Полный, стандартный и достаточный комплект технической документации: компоновки, отличия, стандарты.

Практическая часть:

Практическая работа «Разработка технической документации стандартного продакшнизделия. Семинар - встреча с инженерами производственных комплексов «Практические методы проектирования».

11. Разработка технической документации по проекту.

Теоретическая часть:

Программное обеспечение проекта. Системы CAD/CAE - роль в проекте, функционал, типовые ошибки. Семинар «Форматы: что нужно знать?».

Практическая часть:

Игровой интенсив «Моделика 2.0». Практическая работа «Разработка твердотельной типовой модели. Анализ статических нагрузок».

12. Изготовление элементной базы.

Теоретическая часть:

Расчет, сравнение и подбор стандартной элементной базы, требуемой для реализации прототипа. Возможности ресурсного центра: реализация достаточного производственного цикла. Методы технического контроля (ТК-1, ТК-2).

Практическая часть:

Практическая работа «Изготовление нестандартных компонентов».

13. Диагностика и коррекция организационных, образовательных и методических рисков.

Теоретическая часть:

Риск – менеджмент, как обязательный инструмент в проектной деятельности. Вебинар «Результаты оценки рисков проекта».

Практическая часть:

Практическая работа «Разработка плана эксперимента и апробации».

14. Сборка проекта, тестирование и отладка изделия.

Теоретическая часть:

Типовые методы сборки. Неразъемные, разъемные и быстроразъемные соединения. Дайджест по крепежным/скобяным изделиям.

Практическая часть:

Практический этап «Сборка прототипа». Практический этап «Апробация прототипа».

15. Подготовка презентации проекта и "паспорта проекта".

Теоретическая часть:

Маркетинг проекта, методы разработки визитной карточки изделия. Достаточный комплект документации проекта.

Практическая часть:

Видеофильм «Эффективная презентация как метод взаимодействия с заказчиком». Игровой интенсив с элементами ролевой игры «Собеседование 2.0».

16. Презентация проекта.

Теоретическая часть:

Регламент презентации. Анализ аудитории. Формирование доклада. Методы представления проекта.

Практическая часть:

Практическая работа «Презентация целевого проекта». Игра с ролевыми элементами «Дипломная работа».

- 17. Обратная связь, подведение итогов.
- 18. Летний модуль.

Планируемые результаты Личностные

- работать в команде;
- презентовать результаты работы для разной аудитории.

Предметные

- профессиональную терминологию;
- проектировать робототехнические системы;
- пользоваться основными приборами и оборудованием лаборатории;
- собирать модель по технологической карте;
- выполнять модель по собственному проекту;

Метапредметные

- основы мехатроники, электротехники, электроники, инженерного 3д прототипирования, маркетинга;
- этапы работы в рамках реализации проектной деятельности;
- принципы работы с технической документацией;
- принципы проектирования моделей и прототипов.
- разрабатывать и обрабатывать техническую документацию;
- искать и обрабатывать большие объемы информации;
- анализировать качество выполнения задач в рамках проектной работы;

Календарно-тематическое планирование

№	Дата провед ения	Раздел	Тема	Часы	Методическое сопровождение
		Вводное занятие	Знакомство.	2	Видеофильм о лаборатории.(mp4)
1			Инструктаж (техника безопасности при работе в лаборатории, техника противопожарной безопасности)		Виртуальная экскурсия по лаборатории (презентация .ppt)
			Структура и содержание занятий, основные цели.		
			Вводный контроль.	2	Тест, с применением мобильных устройств (IOS, Android)
2		Проектная технология. (20 часов)	Выбор тем для проекта.	3	Комплект тематических презентаций .ppt
3		(20 1400b)	Методики подбора специалистов в инженерную команду.	3	Комплект тематических презентаций .ppt
4			Типовые этапы работы проекта.	2	Исследовательский стенд «Шаговый электропривод».
5			Тест в формате дополненной реальности «Этапы инженерного проекта».	3	Тест, с применением мобильных устройств (IOS, Android)
6			Анализ входных/выходных параметров системы.	3	Стенд «Мобильная платформа с манипулятором».
7			Формирование результата типового проекта.	2	Стенд «mpsCopтировочная станция».
8			Особенности представления результата.	3	Комплект тематических презентаций .ppt
			Игра-модуль «TeamEngine».	1	Исследовательский стенд «Шаговый электропривод».
9			Пул специалистов проекта: типовые компетенции, квалификации и навыков.	1	Видеофильм «Команда, как эффективный инструмент реализации проекта».

10	Формирование проектных групп и подготовка	Пул специалистов проекта: типовые компетенции, квалификации и навыков.	3	Видеомост/видеоконференция/вст реча (Скайп, CISCO,Sonevisio)
11	материальной базы. (16 часов)	Методы организации командной деятельности.	3	Видеомост/видеоконференция/вст реча (Скайп, CISCO,Sonevisio)
12		Локальный менеджмент инженерной группы.	2	Комплект тематических презентаций .ppt
13		Основные компоненты материальнометодической базы.	3	3Dпринтер, Лазерный станок Конструктор FisherTechnikRobo Пневматический ресурсный набор STC-21.13
14		Игровое командное сплочение инженерной группы. SWOT-анализ инженерной группы.	3	Графическая станция
		Практическая работа «Формирование материально-методической базы проекта».	1	3D ручки
15	Формирование "карточки проекта".	Типовая структура карточки проекта.	1	Шаблон «Карточки проекта» с примером заполнения.
16	(22 часа)	Типовая структура карточки проекта.	3	Шаблон «Карточки проекта» с примером заполнения. Интернет-ресурсы.
17		Методы анализа рисков на этапе формирования карточки проекта.	3	Презентация тематическая .ppt
18		Виды КП.	2	EdrawMax
19		Виды КП.	3	EdrawMax
20		Практическая работа «КП для целевого инженерного проекта».	3	Игра «сектор Q».
21		Практическая работа «КП для целевого инженерного проекта».	2	Googleпатент
22		D-анализ рисков проекта на основе практической работы.	3	Электронный конспект пройденного материала .pdf

		Обзор пройденного теоретического материала (терминология).	2	Тест, с применением мобильных устройств (IOS, Android)
23	Индивидуальная подготовка участников проектной группы.	Методы выявления необходимых навыков и знаний.	1	Стенд-лаборатория по пневмоприводу.
24	(20 часов)	Элективные курсы по выбранным направлением в сводных группах: мехатроника.	2	Конструктор ТЕТRIX ^{тм}
25		Элективные курсы по выбранным направлением в сводных группах: пневмоавтоматика.	3	Лаборатория пневматических систем STC-ES-P-12.
26		Элективные курсы по выбранным направлением в сводных группах: СУ.	3	Лаборатория пневматических систем STC-ES-P-12.
27		Элективные курсы по выбранным направлением в сводных группах: контроллеров.	2	Стенд-лаборатория по пневмоприводу.
28		Элективные курсы по выбранным направлением в сводных группах: программирование.	3	Лаборатория промышленного программирования (на базе SiemensLOGO).
29		Элективные курсы по выбранным направлением в сводных группах электротехника: электропривод.	3	Комплект MechLabcборочная целевая линия.
30		Станочная практика 3dпечать (идея – эскиз – модель – прототип - изделие).	2	Лаборатория3Dпрототипирования с возможностью печати.
		Станочная практика: лазерная резка ЧПУ (идея – эскиз – модель – прототип - изделие).	1	Станок лазерной резки ЧПУ 3 координаты. Лазер CO2.
31	Диагностика и коррекция организационных,	Виды рисков в техническом проекте.	2	Конструктор FisherTechnik базовый набор. Презентация тематическая .ppt

32	образовательных и	Виды рисков в техническом проекте.	3	Презентация тематическая .ppt
33	методических рисков.	Анализ рисков проекта: виды, особенности.	2	Презентация тематическая .ppt
34	(18 часов)	QFDанализ.	3	Презентация тематическая .ppt
35		Квалиметрический анализ.	3	Конструктор FisherTechnik базовый набор. Презентация тематическая .ppt
36		Практическая работа «Анализ рисков типового изделия».	2	Конструктор FisherTechnik базовый набор.
37		Игра-соревнование «Risk-Leader».	3	Игра с применением дополненной реальности с применением мобильных устройств (IOS, Android).
38	План работы инженерных групп. (8 часов)	Основы менеджмента локальной инженерной группы.	3	Программный пакет Exel ПО MegaPlan ПО FestoSim
39		Методы взаимодействия с материально- методической базой и «заказчиком» проекта.	2	Видеомост/видеоконференция/вст реча (Скайп, CISCO,Sonevisio).
40		Итоговый тест блока 1.	3	Конструктор FisherTechnikRobo Пневматический ресурсный набор STC-21.13.
41	Разработка технического решения.	Методы разработки технического решения.	3	Презентация .ptt
42	(24 часа)	Методы разработки технического решения.	2	Программные инструменты Интернет-поиска EdrawMax.
43		Методы разработки технического решения.	3	Программные инструменты Интернет-поиска EdrawMax.
44		Методы разработки технического решения.	3	Презентация .ptt

45		Основы патентного поиска. Часть 1.	2	Презентация .ptt Googleпатент.
46		Основы патентного поиска. Часть 2.	3	Презентация .ptt Googleпатент.
47		Игровой интенсив «ТРИЗ. От идеи к реализации».	3	Видеофильм-курс «ТРИЗ».
48		Игровой интенсив «ТРИЗ. От идеи к реализации».	2	Видеофильм-курс «ТРИЗ».
49		Практическая работа «ТР целевого проекта».	3	Презентация .ptt
50	Подтверждение	Понятие эксперимент.	3	Лаборатория ПЛК.
51	технического решения.	Виды экспериментов в инженерной науке.	2	Лаборатория пневмоавтоматики.
52	(16 часов)	Результаты эксперимента.	3	Лаборатория электропривода.
53		Апробация и тестирование тех. решения.	3	Лаборатория мобильной робототехники.
54		Апробация и тестирование тех. решения.	2	Лаборатория мобильной робототехники.
55		Лабораторная работа «Техническое решение OK/NOK».	3	Лаборатория промышленного программирования (на базе SiemensLOGO).
56	Техническая документация: терминология, основные теоретические положения. (20 часов)	Виды и назначение основных частей технической документации.	3	ПО Solid Works ПоСтеоРагатетік ПО Компас 3D ПО EdrawMax ПО FluidDraw ПО FluidSim
57		Полный, стандартный и достаточный комплект технической документации: компоновка документов.	2	ПО Solid Works ПоСтеоРагатетік ПО Компас 3D ПО EdrawMax ПО FluidDraw ПО FluidSim

58		Полный, стандартный и достаточный комплект технической документации: отличия.	3	ПО Solid Works ПоСтеоРагатетік ПО Компас 3D ПО EdrawMax ПО FluidDraw ПО FluidSim
59		Полный, стандартный и достаточный комплект технической документации: стандарты.	3	ПО Solid Works ПоСтеоРагатетік ПО Компас 3D ПО EdrawMax ПО FluidDraw ПО FluidSim
60		Практическая работа «Разработка тех. документации стандартного продакшнизделия. Часть 1.	2	ПО Solid Works ПоСтеоРагатетік ПО Компас 3D ПО EdrawMax ПО FluidDraw ПО FluidSim
61		Практическая работа «Разработка тех. документации стандартного продакшнизделия. Часть 2.	3	ПО Solid Works ПоСтеоРагатетік ПО Компас 3D ПО EdrawMax ПО FluidDraw ПО FluidSim
62		Семинар - встреча с инженерами производственных комплексов «Практические методы проектирования».	3	Видеомост/видеоконференция/вст реча (Скайп, CISCO,Sonevisio).
63	Разработка технической	Обзор пройденного теоретического материала (терминология). Программное обеспечение проекта.	1	Электронный конспект пройденного материала .pdf. ПО Solid Works
	документации по проекту. (20 часов)			ПоСтеоРагатетік ПО Компас 3D ПО EdrawMax

				ПО FluidDraw ПО FluidSim
64		Системы CAD/CAE – роль в проекте.	3	Программные модули анализа статических нагрузок (COSMOS).
65		Системы CAD/CAE – функционал программного обеспечения.	3	Программные модули анализа статических нагрузок (COSMOS).
66		Системы CAD/CAE – типовые ошибки пользователей.	2	Программные модули анализа статических нагрузок (COSMOS).
67		Семинар «Форматы, что нужно знать?».	3	Презентация .ptt
68		Игровой интенсив «Моделика 2.0».	3	ПО Solid Works ПоСтеоРагатетік ПО Компас 3D ПО EdrawMax ПО FluidDraw ПО FluidSim
69		Практическая работа «Разработка твердотельной типовой модели. Анализ статических нагрузок».	2	Лаборатория3 Опрототипирования с возможностью печати.
70		Практическая работа «Разработка твердотельной типовой модели. Анализ статических нагрузок».	3	Станок лазерной резки ЧПУ 3 координаты. Лазер CO2
71	Изготовление элементной базы. (24 часа)	Подбор стандартной элементной базы, требуемой для реализации прототипа.	3	Учебно-лабораторный комплект начальный уровень STC-ES-4F производственных станции в виде «комплекта для сборки».
72		Расчет элементной базы.	2	Учебно-лабораторный комплект начальный уровень STC-ES-4F производственных станции в виде «комплекта для сборки».
73		Сравнительный анализ элементной базы.	3	Учебно-лабораторный комплект начальный уровень STC-ES-4F

			производственных станции в виде «комплекта для сборки».
74	Возможности ресурсного центра: реализация достаточного производственного цикла.	3	Монтажный комплект для дидактического комплекса позиционирования изделий STC-ES-1-S -комплект кронштейнов -монтажный стол -технологическая рама для монтажа системы STC – ES-1.
75	Возможности ресурсного центра: реализация достаточного производственного цикла.	2	Монтажный комплект для дидактического комплекса позиционирования изделий STC-ES-1-S -комплект кронштейнов -монтажный стол -технологическая рама для монтажа системы STC – ES – 1.
76	Виды методов технического контроля.	3	Презентация .ptt
77	Методы технического контроля (ТК-1).	3	Презентация .ptt
78	Методы технического контроля (ТК-2).	2	Презентация .ptt
79	Практическая работа «Изготовление нестандартных компонентов».	3	Учебно-лабораторный комплект начальный уровень STC-ES-4F производственных станции в виде «комплекта для сборки». Монтажный комплект для дидактического комплекса позиционирования изделий STC-ES-1-S -комплект кронштейнов -монтажный стол

				-технологическая рама для монтажа системы STC – ES– 1.
80	Диагностика и коррекция организационных,	Риск-менеджмент, как обязательный инструмент в проектной деятельности.	3	Электронный конспект пройденного материала .pdf
81	образовательных и методических рисков. (10 часов)	Риск-менеджмент, как обязательный инструмент в проектной деятельности.	2	Программный пакет Exel ПО MegaPlan ПО FestoSim
82		Вебинар «Результаты оценки рисков проекта».	3	Тематическая презентация .ppt
		Практическая работа «Разработка плана эксперимента и апробации».	2	Программный пакет Exel ПО MegaPlan ПО FestoSim
83	Сборка проекта, тестирование и отладка изделия. (24 часа)	Типовые методы сборки.	1	Монтажный комплект для дидактического комплекса позиционирования изделий STC-ES-1-S -комплект кронштейнов -монтажный стол -технологическая рама для монтажа системы STC – ES – 1.
84		Неразъемные соединения.	2	Монтажный комплект для дидактического комплекса позиционирования изделий STC-ES-1-S -комплект кронштейнов -монтажный стол -технологическая рама для монтажа системы STC – ES – 1.
85		Разъемные соединения.	3	Монтажный комплект для дидактического комплекса позиционирования изделий STC-ES-1-S -комплект кронштейнов

				-монтажный стол -технологическая рама для монтажа системы STC – ES– 1.
86		Быстроразъемные соединени	ия. 3	Монтажный комплект для дидактического комплекса позиционирования изделий STC-ES-1-S -комплект кронштейнов -монтажный стол -технологическая рама для монтажа системы STC – ES-1.
87		Дайджест по крепежным изд	делиям. 2	Тематическая презентация .ppt
88		Дайджест по скобяным изде	лиям. 3	Тематическая презентация .ppt
89		Практический этап «Сборка	прототипа». 3	Станок лазерной резки ЧПУ 3 координаты. Лазер СО2. Лаборатория 3Dпечати.
90		Практический этап «Сборка	прототипа». 2	Станок лазерной резки ЧПУ 3 координаты. Лазер СО2. Лаборатория 3Dпечати.
91		Практический этап «Апроба	ция прототипа». 3	Станок лазерной резки ЧПУ 3 координаты. Лазер СО2. Лаборатория 3Dпечати.
		Практический этап «Апроба	ция прототипа». 2	Станок лазерной резки ЧПУ 3 координаты. Лазер СО2. Лаборатория 3Dпечати.
92	Подготовка препроекта и "пасп проекта". (20 часов)		1	Стенд «mpsCopтировочная станция» Стенд «Мобильная платформа с манипулятором» Исследовательский стенд «Шаговый электропривод» Комплекты презентаций к стендам .ppt

93		Маркетинг проекта.	2	Комплект тематических презентаций .ppt
94		Методы разработки визитной карточки изделия.	3	Комплект тематических презентаций .ppt
95		Методы разработки визитной карточки изделия.	3	Комплект тематических презентаций .ppt
96		Перечень необходимого комплекта документации проекта.	2	Комплект тематических презентаций .ppt
97		Подготовка достаточного комплекта документации проекта.	3	Комплект тематических презентаций .ppt
98		Вебинар «Эффективная презентация- как метод взаимодействия с заказчиком».	3	Видеомост/видеоконференция/вст реча (Скайп, CISCO,Sonevisio).
99		Игровой интенсив с элементами ролевой игры «Собеседование 2.0».	2	Видеомост/видеоконференция/вст реча (Скайп, CISCO,Sonevisio).
100		Обзор пройденного теоретического материала (терминология).	1	Стенд «mpsCopтировочная станция» Стенд «Мобильная платформа с манипулятором» Исследовательский стенд «Шаговый электропривод» Комплекты презентаций к стендам .ppt
	Презентация проекта. (10 часов)	Регламент презентации. Анализ аудитории.	2	Комплекты презентаций целевых .ppt
101		Формирование доклада.	3	Комплекты презентаций целевых .ppt
102		Методы представления проекта.	2	Комплекты презентаций целевых .ppt
103		Практическая работа «Презентация целевого проекта».	3	Игра «Защита дипломной работы».

104	Обратная связь, подведение итогов. (12 часов)	Разработка библиотеки годовых проектов.	3	Программные инструменты Интернет-поиска EdrawMax Googleпатент
105		Встреча с «заказчиком» проекта и разбор Fitbackоценки.	2	Видеомост/видеоконференция/вст реча (Скайп, CISCO,Sonevisio).
106		Разработка «плана развития проекта».	3	Фильм - Видеокурс .mp4
107		Выделение рынка и кластера проекта.	3	Программные инструменты Интернет-поиска EdrawMax Googleпатент
108		«Brainstorm»поиск новых проектных окон в игровой форме.	1	Программные инструменты Интернет-поиска EdrawMax Googleпатент
			288	
108	Летний модуль. (32 часа)	Формирование групп в игровой форме.	1	Стенд «mpsCopтировочная станция». Стенд «Мобильная платформа с манипулятором». Исследовательский стенд «Шаговый электропривод». Монтажный комплект для дидактического комплекса позиционирования изделий STC-ES-1-S -комплект кронштейнов -монтажный стол -технологическая рама для монтажа системы STC – ES – 1. Станок лазерной резки ЧПУ 3 координаты. Лазер СО2. Лаборатория 3Dпечати.

			Учебно-лабораторный комплект начальный уровень STC-ES-4F производственных станции в виде «комплекта для сборки».
109	Свободное конструирование индивидуальное.	3	Стенд «тря Сортировочная станция». Стенд «Мобильная платформа с манипулятором». Исследовательский стенд «Шаговый электропривод». Монтажный комплект для дидактического комплекса позиционирования изделий STC-ES-1-S -комплект кронштейнов -монтажный стол -технологическая рама для монтажа системы STC – ES – 1. Станок лазерной резки ЧПУ 3 координаты. Лазер СО2. Лаборатория 3Dпечати. Учебно-лабораторный комплект начальный уровень STC-ES-4F производственных станции в виде «комплекта для сборки».
110	Образовательный блок MBA –Kidч.1.	3	Комплекты презентаций целевых .ppt
111	Обслуживание образовательной лаборатории.	2	Стенд «mpsCopтировочная станция». Стенд «Мобильная платформа с манипулятором». Исследовательский стенд «Шаговый электропривод».

112	Экскурсия в типовой сборочно-	3	Монтажный комплект для дидактического комплекса позиционирования изделий STC-ES-1-S -комплект кронштейнов -монтажный стол -технологическая рама для монтажа системы STC – ES– 1. Станок лазерной резки ЧПУ 3 координаты. Лазер СО2. Лаборатория 3Dпечати. Учебно-лабораторный комплект начальный уровень STC-ES-4F производственных станции в виде «комплекта для сборки».
112	производственный комплекс.		
113	Образовательный блок MBA – Kidч.2.	3	Комплекты презентаций целевых .ppt
114	Основы ПЛК-программирования.	2	Стенд «mpsCopтировочная станция». Стенд «Мобильная платформа с манипулятором». Исследовательский стенд «Шаговый электропривод». Монтажный комплект для дидактического комплекса позиционирования изделий STC-ES-1-S -комплект кронштейнов -монтажный стол -технологическая рама для монтажа системы STC – ES-1.

115			Станок лазерной резки ЧПУ 3 координаты. Лазер СО2. Лаборатория 3Dпечати. Учебно-лабораторный комплект начальный уровень STC-ES-4F производственных станции в виде «комплекта для сборки».
115	Экскурсия в научно-технический музей.	3	
116	Свободное командное конструирование.	3	Стенд «трвСортировочная станция». Стенд «Мобильная платформа с манипулятором». Исследовательский стенд «Шаговый электропривод». Монтажный комплект для дидактического комплекса позиционирования изделий STC-ES-1-S -комплект кронштейнов -монтажный стол -технологическая рама для монтажа системы STC – ES – 1. Станок лазерной резки ЧПУ 3 координаты. Лазер СО2. Лаборатория 3Dпечати. Учебно-лабораторный комплект начальный уровень STC-ES-4F производственных станции в виде «комплекта для сборки».
117	Обновление «Карты кабинета».	2	Стенд «mpsCoртировочная станция». Стенд «Мобильная платформа с манипулятором».

			Исследовательский стенд «Шаговый электропривод». Монтажный комплект для дидактического комплекса позиционирования изделий STC-ES-1-S -комплект кронштейнов -монтажный стол -технологическая рама для монтажа системы STC – ES – 1. Станок лазерной резки ЧПУ 3 координаты. Лазер CO2. Лаборатория 3Dпечати. Учебно-лабораторный комплект начальный уровень STC-ES-4F производственных станции в виде
110	Основы Электроавтоматики.	3	«комплекта для сборки». Комплекты презентаций целевых
118	основы электроивтомитики.	3	.ppt
119	Практическая работа «Индустрия 4.0».	3	Комплект MechLab сборочная целевая линия Промышленный манипулятор Лаборатория промышленного программирования (на базе SiemensLOGO).
120	Подведение итогов практической работы.	2	
		32	
		320	

Оценочные и методические материалы

Требования к уровню освоения дополнительных общеобразовательных программ

Уровень	Пон	азатели	Целеполагание	Результат освоения
освоения	Срок	Максимальн		уровня (показатели
программы	реализа-	ый объем		результативности)
	ции	программы		Требования к
		(в год)		результату
Углубленный	1 год	до 320 часов	Развитие у учащихся	Освоение
			интереса к научной и	прогнозируемых
			научно-исследовательской	результатов
			деятельности,	программы,
			формирование	презентация
			личностных качеств и	результатов на
			социально-значимых	уровне города,
			компетенций, создание	участие учащихся в
			условий для	городских и
			профессиональной	всероссийских
			ориентации, повышение	мероприятиях,
			конкурентоспособности	наличие призеров и
			выпускников на основе	победителей в
			высокого уровня	городских
			полученного образования.	конкурсных
				мероприятиях,
				наличие
				выпускников,
				продолживших
				обучение по
				профилю.

Оценочные материалы

Комплексный анализ обученности учащихся позволяет не только оценить общую успешность обучения, но и выявить направления совершенствования учебного процесса. Для этого качество образования оценивается сразу по трем параметрам: теоретические знания, знание технологий и степень овладения практическими умениями и навыками (компетенциями).

Различают минимальный (низкий), общий (средний) и продвинутый (высокий) уровни обученности.

Уровень обученности в области теоретических знаний определяется степенью усвоения теоретического материала, глубиной, широтой и системностью теоретических знаний, соответствием программным требованиям, свободой использования специальной терминологии.

Уровень обученности в области знания технологий определяется степенью усвоения материала, глубиной, широтой и системностью знаний технологий, знанием инструментальной базы и техники работы с ней, знанием алгоритма выполнения цепочки цикла.

Уровень обученности в области овладения компетенциями определяется разнообразием умений и навыков, технологичностью, грамотностью, то есть, соответствием существующим нормам, правилам и технологиям практических действий, свободой владения специальным оборудованием и оснащением, качеством детских творческих работ (грамотностью исполнения, использованием творческих элементов), соответствием уровня практических умений и навыков программным требованиям.

Формы контроля

В течение учебного года проводятся контрольные и зачетные работы по темам, целью которых является определение степени усвоения материала обучающимися и стимулируется потребность учащихся к совершенствованию своих знаний и улучшению практических результатов.

- Текущий контроль (беседы по изучаемым темам, опросы, блиц опросы, выполнение контрольных заданий, решение конструкторских задач).
- Тематический контроль (тестовые задания, задания на знание узлов робототехнических и мехатронных систем, работа со схемами, решение ситуационных задач, рефераты и презентации по теме или проблеме; выполнение контрольных заданий, семинары, соревнования, разработка творческого проекта).
- Зачетное занятие (выполнение творческих проектных заданий).
- Итоговый контроль представление и защита инженерного проекта.

Методические материалы

Процесс достижения поставленных целей и решения задач программы осуществляется в тесном контакте педагога и учащихся, при этом реализуются различные методы осуществления учебного процесса. Выбор методов обучения, в каждом конкретном случае, зависит от уровня знаний и подготовки учащихся, при этом делается акцент на побуждении учащихся к активному восприятию информации и формированию собственного взгляда на предлагаемый материал. Методические особенности реализации программы предполагают сочетание возможности развития индивидуальных творческих способностей и формирование умений взаимодействовать в коллективе, работать в группе. Используются такие педагогические технологии как обучение в сотрудничестве, проектные методы обучения, технологии использования в обучении игровых методов, информационно-коммуникационные технологии.

Методы обучения: методы организации учебно-познавательной деятельности (словесные - беседа, рассказ, монолог, диалог, дискуссия; наглядные - демонстрация иллюстраций, схем и чертежей РС, демонстрация видео- и фотоматериалов, изучение моделей и макетов, рисунков, макетов, моделей, чертежей, плакатов и т.д.; практические — сборка и разборка отдельных узлов РС, работа на стендах, базирующихся на реальных робототехнических системах).

Методы стимулирования и мотивации учебно-познавательной деятельности: познавательные и развивающие игры, экскурсии, коллективные обсуждения, подготовка и участие в тематических конкурсах и фестивалях, в том числе в рамках федеральной программы "Робототехника".

- Экскурсии. Решению воспитательных задач, поставленных в программе, способствуют экскурсии в музеи и вузы Санкт-Петербурга, где обучающиеся знакомятся с профессиями, связанными с робототехникой, мехатроникой, радиотехникой, электроникой.
- Коллективные обсуждения. Дети общаются между собой, делятся опытом, получают знания, благодаря чему у них всегда сохраняется здоровая конкуренция и мотивация к дальнейшему обучению.
- Активный отдых. Выезды в каникулярное время, походы выходного дня, учебнотренировочные занятия формируют сплоченный детский коллектив. Командные приключенческие игры, креативные шоу программы, различные формы проведения тимбилдингов помогают сохранять высокую мотивацию к занятиям.
- Тимбилдинг. Тимбилдинг или командообразование, обычно применяется к широкому диапазону действий для создания и повышения эффективности работы команды. В настоящее время тимбилдинг представляет собой одну из перспективных технологий, обеспечивающих полноценное развитие детского объединения, и является одним из наиболее эффективных инструментов управления. Командное строительство направлено на создание групп

равноправных учащихся, сообща несущих ответственность за результаты своей деятельности и на равной основе осуществляющих разделение труда в команде.

Методы воспитания: беседы об истории робототехники; рассказы о достижениях в робототехнике российских инженеров и ученых; индивидуальные беседы с учащимися; поощрение отличившихся в процессе обучения; проведение опросов учащихся и анализ полученных результатов с целью принятия необходимых мер; метод примера, педагогическое требование, создание воспитательных ситуаций, соревнование, поощрение, наблюдение, анкетирование, анализ результатов. Воспитание активной гражданской позиции и формирование здорового образа жизни.

Методы контроля: соревнования, выставки, контрольные задания в конце каждой темы, оценка знаний узлов РС, блиц опросы, решение конструкторских и технологических задач, круглые столы, защита творческих проектов и исследовательских работ, презентация рефератов.

Выбор метода обучения зависит от содержания занятия, уровня подготовки и опыта учащихся.

Комплексное использование методов (наглядных, словесных и практических) на занятиях позволяет создать творческую атмосферу освоения образовательных задач программы и условия для саморазвития личности учащихся, формирования у них профессиональных качеств.

На занятиях по всем темам проводится инструктаж по технике безопасности при работе с аппаратурой.

Особое внимание уделяется подросткам из неблагополучных семей. С ними и их родителями ведется индивидуальная работа.

В образовательном процессе используется педагогическая технология проектного обучения.

В широком понимании проектом называют все, что задумывается или планируется. В переводе с латинского языка «проект» - «брошенный вперед», то есть замысел, в виде прообраза объекта. У нас речь пойдет о проектах, создаваемых учащимися в процессе образовательной деятельности и путях педагогического руководства ими.

Проектное обучение, зародилось за рубежом и получило широкое распространение в Западной Европе и Северной Америке в 20-ые года XX века. В эти же годы оно применялось в отечественной практике преподавания.

Само понятие проектного обучения неоднозначно трактуется в педагогической литературе. Западные дидакты, стоящие у истоков данного способа преподавания, называли его *«методом* проектов» [Дьюи Д. Школа и общество.-М.,1923]. В проектах В.Кильпатрика и Е.Коллингса учебное проектирование рассматривалось как основная форма организации процесса обучения [Коллингс Е. Опыт работы американской школы по методу проектов. - М.,1926].

В зарубежной педагогической практике проектное обучение совершило эволюционный путь от формы организации учебного процесса, целиком и полностью основанном на этом способе познания мира, до использования проектов в комплексе с другими формами организации преподавания в рамках классно-урочной системы. Одновременно происходило сужение содержательной основы проектирования до межпредметной и внутрипредметной.

Анализ литературных источников и опыта использования проектирования в наши дни [В.В. Гузеев, К. Доннермайер, М.В. Кларин и др.], позволяет выдвинуть такую трактовку этого понятия: учебное проектирование - это форма организации учебного процесса, предполагающая планирование и самостоятельное изучение коллективом учащихся (или одним учеником) определенной учебной проблемы на протяжении длительного учебного времени с предъявлением результата творческой деятельности тем или иным способом.

В современной зарубежной и отечественной педагогической практике встречаются различные виды проектного обучения. Их можно классифицировать:

- по месту в учебном процессе (внеурочные или сочетающие классно-урочную и внеклассную деятельность учащихся);
- по масштабу проблематики ученической деятельности (междисциплинарные, межкурсовые, предметные проекты);
- по охвату школьников проектной деятельностью (индивидуальные, групповые, коллективные).

Конкретный вид проектного обучения зависит от выдвигаемых педагогом целей и ожидаемых результатов.

Общие цели любого ученического проекта, таковы: развитие познавательного интереса к процессу обучения, расширение, углубление и закрепление учебных знаний, формирование у учащихся умений ставить проблемы, определять структуру и разрабатывать стратегию их творческого решения; самоорганизовывать свою деятельность по решению проблем.

Анализ педагогической литературы названных авторов позволил выделить такие особенности проектирования как формы обучения:

- ✓ проектное обучение целенаправленная и спланированная деятельность учеников, имеющая четко определенные начало и конец;
- ✓ участие учащихся в проекте является добровольным, оно всегда должно *опираться на* непосредственный опыт и интерес учащихся;
- ✓ руководство проектным обучением выходит за временные рамки занятия и требует длительного, поэтапного управления процессом познавательной и творческой деятельности учащихся на занятиях и во внеучебное время;
- ✓ проектирование предполагает организацию коммуникативно-диалогической деятельности, общения учащихся друг с другом, с учителем, развитие умения работать в команде;
- ✓ проектное обучение имеет практический выход: ход и результаты проекта документально фиксируются и представляются в той или иной форме.

Для достижения наилучших результатов возможны, на наш взгляд, такие *критерии* выбора темы проекта:

- заключенная в теме проблема должна естественно возникать из опыта и потребностей самих школьников;
- тема проекта, с одной стороны, должна соотноситься с учебным материалом, изучаемым на занятиях, иметь ориентационную содержательную основу, а с другой - она должна предполагать практический подход, нацеливать на поиск новых прикладных сведений;
- тема должна соответствовать возрастным познавательным возможностям учащихся, их уровню знаний и умений;
- уровень задач, которые будут решать учащиеся в процессе работы над проектом, должен быть таким, чтобы школьники могли сами выбрать способы своей деятельности, тем самым будут активизироваться механизмы принятия решений;
- тема должна быть достаточно объемной, чтобы оправдать усилия группы учащихся; тема должна быть обеспечена доступными для учеников источниками.

В процессе работы над проектом учащиеся проходят определенные этапы, которые и легли в основу логики построения содержания 3-его года обучения:

- 1. Формирование проектных групп и подготовка материальной базы.
- 2. Формирование «карточки проекта».
- 3. Индивидуальная подготовка участников проектной группы.
- 4. Диагностика и коррекция организационных, образовательных и методических рисков.
- 5. План работы инженерных групп.
- 6. Разработка технического решения.

- 7. Подтверждение технического решения.
- 8. Техническая документация: терминология, основные теоретические положения.
- 9. Разработка технической документации по проекту.
- 10. Изготовление элементной базы.
- 11. Диагностика и коррекция организационных, образовательных и методических рисков.
- 12. Сборка проекта, тестирование и отладка изделия.
- 13. Подготовка презентации проекта и "паспорта проекта".
- 14. Презентация проекта.
- 15. Обратная связь, подведение итогов.

Анализ педагогического опыта свидетельствует, что проектное обучение - личностно ориентированная форма деятельности. Она самомотивируема, предполагает активный интерес учащихся и добровольное участие в работе, приносит удовлетворение, обеспечивает профессиональную ориентацию школьников в реальной жизненной сфере.

Процесс проектного обучения предполагает, как правило, самостоятельное познание учащимися проблемы, их коммуникативно-диалогическую деятельность, общение друг с другом, с педагогом, умение работать в команде. Работа над проектом позволяет школьникам учиться на собственном опыте и опыте других, в конкретном деле. Здесь ценны не только результаты, но и сам процесс деятельности школьников.

Учебно-методический комплекс программы состоит из разделов: нормативное обеспечение, методические материалы для педагогов, учебно-методические материалы для учащихся, диагностические и контрольные материалы, средства обучения, воспитательная работа.

За время работы по данной образовательной программе были реализованы несколько сложных инженерных проектов:

«Универсальная мобильная платформа с модулем орошения шлаковых грунтов» - авторы и разработчики Орлов Данила, Доронин Павел и Салов Егор.

Инициатор проекта (заказчик) НТЦ Синергия. Автономная тележка для перемещения по пересечённой местности, с грузоподъемностью до 70 кг. Проект успешно применён в тестировании на химических производствах орошения прилегающих земель, с целью исключить возможность шлакового пылеобразования.

был для

«Бесконтактный модуль безопасности» - авторы

разработчики Баранов Иван, Швецов Вячеслав, Сузоков Александр.

Блок безопасности, включающий в себя датчик наличия оператора в рабочей зоне, автономное питание, световой и звуковой извещатель состояния, несколько модулей объединяются в систему "safe guard detect", создающую световой барьер.

Применяется для установки на производственное оборудование/ станки. Для обеспечения безопасности во время работы. Блок исключает наличие оператора в опасной зоне во время работы. Применение: успешное тестирование проведено на 3D принтерах, блок безопасности исключает опасность защемления и пореза рук детей во время работы оборудования.

«Сортировочная станция» - авторы и разработчики Орлов Данила, Доронин Павел, Лунева Василиса.

Сортировочная станция — это мехатронная автоматическая система для сборки и сортировки корпусов, для сыпучих продуктов (крошка для напыления). Данное инженерное решение успешно применено на крупных промышленных предприятии (РG или Nissan).

«Система локальной доставки материалов первой помощи» - автор и разработчик Хасанов Николай.

Комплексная система для оперативной доставки комплекта первой помощи к месту ДТП, включающая в себя медицинский комплект, противоударный бокс (разработка), манипулятор - захват, универсальное крепление на доступные на рынке квадрокоптеры.

Назначение проекта: от различных факторов в ДТП погибает большой процент людей в первые 6-8 минут. В мегаполисах за это время скорая помощь доехать не успевает. На помощь приходит данная система. После вызова 03, оператор дистанционно выбирает комплект/бокс с

необходимым наполнением и летит на указанную точку, выкидывает бокс и возвращается, оператор помогает вызвавшему оказать при помощи бокса правильную помощь и поддержать жизнь в пострадавшем до прибытия машины скорой помощи.

«**Анализатор сена»** - авторы и разработчики Лунева Василиса и Демиденко Валерия.

Данное устройство позволяет проверять сено перед кормлением лошадей, так как отравление лошади некачественным сеном приводит к тяжелым

заболеваниям, что влечет за собой дорогое лечение, или приводит к смерти животного. Аналогов подобного устройства нет, сейчас проверку качества сена делает человек с низкой эффективностью и большими временными затратами. Использование устройства обеспечивает

высокий результат и сокращает временные затраты в 3 раза. Успешное тестирование - конный центр "Гера".

Проекты воспитанников ЦИК получили призовые места в городском конкурсе проектов «От идеи до воплощения» за 2017-2018 гг., положительные отзывы курирующего предприятия НТЦ «Синергия», специальный диплом от ЛЭТИ за инженерную разработку, заняли призовое место в конкурсе научно-технического творчества учащихся союзного государства «Таланты ХХІвека» в Белоруссии в 2017г.

Учащиеся одержали победы не только на городском уровне, но успешно выступили на «Юных изобретателей Всероссийском конкурсе рационализаторов» (г. Ростов-на-Дону), Всероссийском конкурсе «Научно-технического творчества молодежи» HTTM (г. Москва), заняли призовые места на III Открытом региональном чемпионате «Молодые профессионалы» (WorldSkills Russia).

Успешность детей Центра Инженерных компетенций определяется не только дипломами и

грамотами, которые получены за высокие результаты, но и в индивидуальном росте каждого воспитанника.

И говоря о выпускниках, авторами программы сформирована своеобразная идеальная модель, которая соответствует вызовам времени.

Выпускник Центра инженерных компетенций:

ЦИК способствует развитию **профессиональной ориентации** детей и подростков и развивает их интерес к инженерному делу. **Обучение не заканчивается** в стенах нашего Центра, а продолжается и дальше, уже во взрослой жизни.

На сегодняшний день мы уже имеем воспитанников, поступивших по направлениям «машинное управления», «мехатроника» на бюджетную основу, несколько выпускников готовятся к поступлению на различные инженерные направления в ВУЗы и колледжи Санкт-Петербурга в этом учебном году.

СПИСОК ЛИТЕРАТУРЫ

■ Для педагога

- CONSTRUCTOPEDIA NXT Kit 9797, Beta Version 2.1, 2008, Center for Engineering Educational Outreach, Tufts University, http://www.legoengineering.com/library/doc_download/150-nxt-constructopedia-beta-21.html.
- 2. Engineering with LEGO Bricks and ROBOLAB. Third edition. Eric Wang. College House Enterprises, LLC, 2007.
- 3. Lego Mindstorms NXT. The Mayan adventure. James Floyd Kelly. Apress, 2006.
- 4. LEGO Technic Tora no Maki, ISOGAWA Yoshihito, Version 1.00 Isogawa Studio, Inc., 2007, http://www.isogawastudio.co.jp/legostudio/toranomaki/en/.
- 5. The LEGO MINDSTORMS NXT Idea Book. Design, Invent, and Build by Martijn Boogaarts, Rob Torok, Jonathan Daudelin, et al. San Francisco: No Starch Press, 2007.
- 6. The Unofficial LEGO MINDSTORMS NXT Inventor's Guide. David J. Perdue. San Francisco: No Starch Press, 2007.
- 7. Афонин В.А., Макушкин В.С. Интеллектуальные робототехнические системы. М.: Экономика, 2006.
- 8. Бабич А.В., Баранов А.Г., Калабин И.В. и др. Промышленная робототехника: Под редакцией Шифрина Я.А. М.: Машиностроение, 2002.
- 9. Булгаков А.Г., Воробьев В А. Промышленные роботы. Кинематика, динамика, контроль и управление. М.: ЭкоПресс, 2014.
- 10. Вильямс Дж. Программируемые роботы. Создаем робота для своей домашней мастерской. M.: NY, 2015.
- 11. Давыдов В.Н. Формирование основ инженерного мышления детей в Санкт-Петербургском центре детского (юношеского) технического творчества.// Формирование основ инженерного мышления у обучающихся средствами детского технического творчества в СПбЦД(Ю)ТТ. Из опыта работы. Выпуск 1.- СПб, 2017, С.4.
- 12. Журнал «Компьютерные инструменты в школе», подборка статей за 2012 г. «Основы робототехники на базе конструктора Lego Mindstorms NXT».
- 13. Зенкевич С.Л., Ющенко А.С. Основы управления манипуляционными роботами. М.: Экономика, 2005.
- 14. Индустрия развлечений: Перворобот. Книга для учителя и сборник проектов. М.: Интокс Lego Group-перевод, 2013.
- 15. Котова А.А., Андреева Ю.Г., Юров А.В., Давыдова В.Ю., Савельева Ю.В. Система робототехнической лаборатории. Методические рекомендации для специалистов, обучающих детей промышленной робототехнике. СПб.: СПбЦД(Ю)ТТ, 2016.
- 16. Малинецкий Г.Г. Робототехника, прогноз, программирование. М.: 2009.
- 17. Материалы для повышения квалификации специалистов компании ФЕСТО мирового лидера в области пневмоавтоматизации, 2015.
- 18. Методические материалы кафедры К-4 прикладной механики, автоматики и управления ВОЕНМЕХА.
- 19. Методические материалы программ детского активного отдыха «Adventure Game.Ltd»
- 20. Робототехника для детей и родителей. С.А. Филиппов. СПб: Наука, 2011.
- 21. Савельева Ю.В. «Информационно-аналитический центр. От форсайта к действию». //Формирование основ инженерного мышления у обучающихся средствами детского технического творчества в СПбЦД(Ю)ТТ. Из опыта работы. Выпуск 1.- СПб, 2017, С.29.
- 22. Санкт-Петербургские олимпиады по кибернетике. / М.С. Ананьевский, Г.И.Болтунов, Ю.Е.Зайцев, А.С.Матвеев, А.Л.Фрадков, В.В.Шиегин. Под ред. А.Л.Фрадкова, М.С. Ананьевского. СПб.: Наука, 2011.
- 23. Скотт Питер. Промышленные роботы переворот в производстве. М.: Экономика, 2010.
- 24. Учебные материалы Международного научно-образовательного центра «БГТУ ФЕСТО».

- 25. Филиппов С.А. Робототехника для детей и родителей. СПб: Наука, 2011.
- 26. Фу К., Гансалес Ф., Лик К. Робототехника: Перевод с англ. М. Мир, 2010.
- 27. Юревич Е.И. Интеллектуальные роботы. М.: АСТ, 2007.
- 28. Юров А.В., Савельева Ю.В., Спрут А.А., Бакуло С.А. Проект Центр Инженерных компетенций. //Формирование основ инженерного мышления у обучающихся средствами детского технического творчества в СПбЦД(Ю)ТТ. Из опыта работы. Выпуск 1.- СПб, 2017, С.26.
- 29. Юров А.В. Центр Инженерных компетенций. // «Будущее сильной России в высоких технологиях» сборник тезисов XII открытой юношеской научно-практической конференции, ГБНОУ «СПБ ГДТЮ», СПб, 2018, Т.9, С.6-9.
- 30. Юров А.В., Михайлов М.В., Стажков С.М. Роботизированная мобильная платформа с модулем сбора проб грунта. Балтийский государственный технический университет им Д.Ф. Устинова «Военмех», г. Санкт-Петербург, 2013
- 31. Юров А.В. Введение в робототехнику мобильных систем, учебное пособие. Министерство образования и науки РФ, БГТУ Военмех. СПб, 2011.
- 32. Юров А.В. Пневматический позиционер. Учебное пособие, БГТУ «Военмех». СПб., 2012.
- 33. Юров А.В. Компоненты пропорциональной гидравлики. Министерство образования и науки РФ, БГТУ Военмех. СПб, 2011.
- 34. Юров А.В. Компоненты робототехнических систем. Учебное пособие. Министерство образования и науки РФ, БГТУ Военмех. СПб, 2012.
- 35. Яковлева Н. Проектная деятельность в образовательном учреждении. Учебное пособие для обучающихся по дополнительной профессиональной программе «Современные образовательные технологии: Проектная деятельность в образовательном учреждении». М., Изд. Флинта, 2014.

Для детей и родителей

Азимов А. Я, робот. / Серия: Библиотека приключений. – М.: Эксмо, 2002.

Ананьевский М.С. и др. Санкт-Петербургские олимпиады по кибернетике Под ред. А.Л.Фрадкова, М.С. Ананьевского. - СПб.: Наука, 2006.

Журнал «Компьютерные инструменты в школе», подборка статей за 2012 г. «Основы робототехники на базе конструктора Lego Mindstorms NXT».

Филиппов С.А. Робототехника для детей и родителей. - СПб: Наука, 2011.

ИНТЕРНЕТ-РЕСУРСЫ

- 1. http://www.prorobot.ru/
- 2. http://www.myrobot.ru/
- 3. http://www.robotics.ru
- 4. http://www.www.roboclub.ru
- 5. http://www.robosport.ru/
- 6. http://www.polarcom.ru
- 7. http://insiderobot.blogspot.com
- 8. http://www.airobot.ru
- 9. http://flunk.ru
- 10. http://www.xelv.ru
- 11. http://rassionrobots.ucoz.ru
- 12. http://nanodroid.ru
- 13. http://www.legoeducation.info/nxt/resources/building-guides/
- 14. http://www.legoengineering.com/